Comptes Rendus
Article de recherche - Probabilités
A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
[Théorème limite du filtrage non linéaire pour les systèmes stochastiques McKean–Vlasov à plusieurs échelles]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1287-1299.

Ce travail concerne les systèmes stochastiques McKean–Vlasov multi-échelles. Tout d’abord, nous prouvons un principe de moyenne pour ces systèmes au sens L2. De plus, un taux de convergence est présenté. Ensuite, nous définissons le filtrage non linéaire de ces systèmes et établissons un théorème limite sur le filtrage non linéaire de ces systèmes au sens L 2 .

The work concerns about multiscale McKean–Vlasov stochastic systems. First of all, we prove an average principle for these systems in the L 2 sense. Moreover, a convergence rate is presented. Then we define the nonlinear filtering of these systems and establish a limit theorem about nonlinear filtering of them in the L 2 sense.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.637
Classification : 60G35
Mots clés : Multiscale McKean–Vlasov stochastic systems, average principle, nonlinear filtering, limit theorem

Huijie Qiao 1 ; Shengqing Zhu 1

1 School of Mathematics, Southeast University, Nanjing, Jiangsu 211189, P.R.China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1287_0,
     author = {Huijie Qiao and Shengqing Zhu},
     title = {A limit theorem of nonlinear filtering for multiscale {McKean{\textendash}Vlasov} stochastic systems},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1287--1299},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.637},
     language = {en},
}
TY  - JOUR
AU  - Huijie Qiao
AU  - Shengqing Zhu
TI  - A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1287
EP  - 1299
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.637
LA  - en
ID  - CRMATH_2024__362_G11_1287_0
ER  - 
%0 Journal Article
%A Huijie Qiao
%A Shengqing Zhu
%T A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems
%J Comptes Rendus. Mathématique
%D 2024
%P 1287-1299
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.637
%G en
%F CRMATH_2024__362_G11_1287_0
Huijie Qiao; Shengqing Zhu. A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1287-1299. doi : 10.5802/crmath.637. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.637/

[1] Zachary William Bezemek; Konstantinos Spiliopoulos Rate of homogenization for fully-coupled McKean–Vlasov SDEs, Stoch. Dyn., Volume 23 (2023) no. 2, 2350013, 65 pages | DOI | MR | Zbl

[2] Jingyue Gao; Wei Hong; Wei Liu Small noise asymptotics of multi-scale McKean-Vlasov stochastic dynamical systems, J. Differ. Equations, Volume 364 (2023), pp. 521-575 | DOI | MR | Zbl

[3] R. Z. Hasʼminskiĭ On the principle of averaging the Itô’s stochastic differential equations, Kybernetika, Volume 4 (1968), pp. 260-279 | MR | Zbl

[4] Di Liu Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., Volume 8 (2010) no. 4, pp. 999-1020 | DOI | MR | Zbl

[5] Meiqi Liu; Huijie Qiao Uniqueness and superposition of the space-distribution-dependent Zakai equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 27 (2024) no. 1, 2350014, 24 pages | DOI | MR | Zbl

[6] Wei Liu; Michael Röckner; Xiaobin Sun; Yingchao Xie Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients, J. Differ. Equations, Volume 268 (2020) no. 6, pp. 2910-2948 | DOI | MR | Zbl

[7] Andrew Papanicolaou; Konstantinos Spiliopoulos Filtering the maximum likelihood for multiscale problems, Multiscale Model. Simul., Volume 12 (2014) no. 3, pp. 1193-1229 | DOI | MR | Zbl

[8] Huijie Qiao Average principles and large deviation principles of multiscale multivalued McKean–Vlasov stochastic systems (2023) (http://arxiv.org/abs/2307.14561)

[9] Huijie Qiao Convergence of nonlinear filtering for multiscale systems with correlated Lévy noises, Stoch. Dyn., Volume 23 (2023) no. 2, 2350016, 30 pages | DOI | Zbl

[10] Huijie Qiao; Wanlin Wei Strong approximation of nonlinear filtering for multiscale McKean–Vlasov stochastic systems (2022) (http://arxiv.org/abs/2206.05037)

[11] Huijie Qiao; Wanlin Wei Weak approximation of nonlinear filtering for multiscale McKean–Vlasov stochastic systems (2022) (http://arxiv.org/abs/2212.00240)

[12] Michael Röckner; Xiaobin Sun; Yingchao Xie Strong convergence order for slow-fast McKean–Vlasov stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 57 (2021) no. 1, pp. 547-576 | DOI | MR | Zbl

[13] Nevroz Sen; Peter E. Caines Nonlinear filtering for McKean–Vlasov type SDEs with application to mean field games, Proceedings of the 21st International symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands (2014), pp. 1344-1351

[14] Feng-Yu Wang Distribution dependent SDEs for Landau type equations, Stochastic Processes Appl., Volume 128 (2018) no. 2, pp. 595-621 | DOI | MR | Zbl

[15] Jie Xu; Juanfang Liu; Jicheng Liu; Yu Miao Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations, Appl. Math. Optim., Volume 84 (2021) no. suppl. 1, p. S837-S867 | DOI | MR | Zbl

[16] Nevroz Şen; Peter E. Caines Nonlinear filtering theory for McKean-Vlasov type stochastic differential equations, SIAM J. Control Optim., Volume 54 (2016) no. 1, pp. 153-174 | DOI | Zbl

Cité par Sources :

Commentaires - Politique