[Théorème limite du filtrage non linéaire pour les systèmes stochastiques McKean–Vlasov à plusieurs échelles]
Ce travail concerne les systèmes stochastiques McKean–Vlasov multi-échelles. Tout d’abord, nous prouvons un principe de moyenne pour ces systèmes au sens L2. De plus, un taux de convergence est présenté. Ensuite, nous définissons le filtrage non linéaire de ces systèmes et établissons un théorème limite sur le filtrage non linéaire de ces systèmes au sens .
The work concerns about multiscale McKean–Vlasov stochastic systems. First of all, we prove an average principle for these systems in the sense. Moreover, a convergence rate is presented. Then we define the nonlinear filtering of these systems and establish a limit theorem about nonlinear filtering of them in the sense.
Accepté le :
Publié le :
Mots clés : Multiscale McKean–Vlasov stochastic systems, average principle, nonlinear filtering, limit theorem
Huijie Qiao 1 ; Shengqing Zhu 1
@article{CRMATH_2024__362_G11_1287_0, author = {Huijie Qiao and Shengqing Zhu}, title = {A limit theorem of nonlinear filtering for multiscale {McKean{\textendash}Vlasov} stochastic systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1287--1299}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.637}, language = {en}, }
TY - JOUR AU - Huijie Qiao AU - Shengqing Zhu TI - A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems JO - Comptes Rendus. Mathématique PY - 2024 SP - 1287 EP - 1299 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.637 LA - en ID - CRMATH_2024__362_G11_1287_0 ER -
Huijie Qiao; Shengqing Zhu. A limit theorem of nonlinear filtering for multiscale McKean–Vlasov stochastic systems. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1287-1299. doi : 10.5802/crmath.637. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.637/
[1] Rate of homogenization for fully-coupled McKean–Vlasov SDEs, Stoch. Dyn., Volume 23 (2023) no. 2, 2350013, 65 pages | DOI | MR | Zbl
[2] Small noise asymptotics of multi-scale McKean-Vlasov stochastic dynamical systems, J. Differ. Equations, Volume 364 (2023), pp. 521-575 | DOI | MR | Zbl
[3] On the principle of averaging the Itô’s stochastic differential equations, Kybernetika, Volume 4 (1968), pp. 260-279 | MR | Zbl
[4] Strong convergence of principle of averaging for multiscale stochastic dynamical systems, Commun. Math. Sci., Volume 8 (2010) no. 4, pp. 999-1020 | DOI | MR | Zbl
[5] Uniqueness and superposition of the space-distribution-dependent Zakai equations, Infin. Dimens. Anal. Quantum Probab. Relat. Top., Volume 27 (2024) no. 1, 2350014, 24 pages | DOI | MR | Zbl
[6] Averaging principle for slow-fast stochastic differential equations with time dependent locally Lipschitz coefficients, J. Differ. Equations, Volume 268 (2020) no. 6, pp. 2910-2948 | DOI | MR | Zbl
[7] Filtering the maximum likelihood for multiscale problems, Multiscale Model. Simul., Volume 12 (2014) no. 3, pp. 1193-1229 | DOI | MR | Zbl
[8] Average principles and large deviation principles of multiscale multivalued McKean–Vlasov stochastic systems (2023) (http://arxiv.org/abs/2307.14561)
[9] Convergence of nonlinear filtering for multiscale systems with correlated Lévy noises, Stoch. Dyn., Volume 23 (2023) no. 2, 2350016, 30 pages | DOI | Zbl
[10] Strong approximation of nonlinear filtering for multiscale McKean–Vlasov stochastic systems (2022) (http://arxiv.org/abs/2206.05037)
[11] Weak approximation of nonlinear filtering for multiscale McKean–Vlasov stochastic systems (2022) (http://arxiv.org/abs/2212.00240)
[12] Strong convergence order for slow-fast McKean–Vlasov stochastic differential equations, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 57 (2021) no. 1, pp. 547-576 | DOI | MR | Zbl
[13] Nonlinear filtering for McKean–Vlasov type SDEs with application to mean field games, Proceedings of the 21st International symposium on Mathematical Theory of Networks and Systems, Groningen, The Netherlands (2014), pp. 1344-1351
[14] Distribution dependent SDEs for Landau type equations, Stochastic Processes Appl., Volume 128 (2018) no. 2, pp. 595-621 | DOI | MR | Zbl
[15] Strong averaging principle for two-time-scale stochastic McKean-Vlasov equations, Appl. Math. Optim., Volume 84 (2021) no. suppl. 1, p. S837-S867 | DOI | MR | Zbl
[16] Nonlinear filtering theory for McKean-Vlasov type stochastic differential equations, SIAM J. Control Optim., Volume 54 (2016) no. 1, pp. 153-174 | DOI | Zbl
Cité par Sources :
Commentaires - Politique