Comptes Rendus
Théorie des nombres
Identités et estimations concernant le plus petit commun multiple de suites à forte divisibilité
Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 481-487.

Dans cette note, nous montrons d’abord que pour toute suite à forte divisibilité a=a n n1 , on a l’identité : ppcmn 0 a ,n 1 a ,,n n a =ppcma 1 ,,a n ,a n+1 a n+1 n, généralisant l’identité de Farhi (obtenue en 2009 pour a n =n). Par suite, nous en déduisons quelques autres identités intéressantes. Finalement, nous appliquons ces identités pour estimer le plus petit commun multiple des termes consécutifs de certaines suites de Lucas. En désignant par F n n la suite de Fibonacci usuelle, nous montrons par exemple que pour tout entier n1, on a :

Φ n 2 4-9 4 ppcmF 1 ,,F n Φ n 2 3+4n 3 ,

Φ désigne le nombre d’or.

In this note, we first prove that for any strong divisibility sequence a=a n n1 , we have the identity: lcmn 0 a ,n 1 a ,,n n a =lcma 1 ,,a n ,a n+1 a n+1 n, generalizing the identity of Farhi (obtained in 2009 for a n =n). Then, we derive from it other interesting identities. Finally, we apply those identities to estimate the least common multiple of the consecutive terms of some Lucas sequences. Denoting by F n n the usual Fibonacci sequence, we prove for example that for every positive integer n, we have:

Φ n 2 4-9 4 lcmF 1 ,,F n Φ n 2 3+4n 3 ,

where Φ denotes the golden ratio.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.64

Sid Ali Bousla 1 ; Bakir Farhi 1

1 Laboratoire de Mathématiques appliquées, Faculté des Sciences Exactes, Université de Bejaia, 06000 Bejaia, Algérie
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_4_481_0,
     author = {Sid Ali Bousla and Bakir Farhi},
     title = {Identit\'es et estimations concernant le plus petit commun multiple de suites \`a forte divisibilit\'e},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {481--487},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {4},
     year = {2020},
     doi = {10.5802/crmath.64},
     language = {fr},
}
TY  - JOUR
AU  - Sid Ali Bousla
AU  - Bakir Farhi
TI  - Identités et estimations concernant le plus petit commun multiple de suites à forte divisibilité
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 481
EP  - 487
VL  - 358
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.64
LA  - fr
ID  - CRMATH_2020__358_4_481_0
ER  - 
%0 Journal Article
%A Sid Ali Bousla
%A Bakir Farhi
%T Identités et estimations concernant le plus petit commun multiple de suites à forte divisibilité
%J Comptes Rendus. Mathématique
%D 2020
%P 481-487
%V 358
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.64
%G fr
%F CRMATH_2020__358_4_481_0
Sid Ali Bousla; Bakir Farhi. Identités et estimations concernant le plus petit commun multiple de suites à forte divisibilité. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 481-487. doi : 10.5802/crmath.64. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.64/

[1] Jean-Paul Bézivin; Attila Pethö; Alfred J. van der Poorten A full characterisation of divisibility sequences, Am. J. Math., Volume 112 (1990) no. 6, pp. 985-1001 | DOI | MR | Zbl

[2] Nathan Bliss; Ben Fulan; Stephen Lovett; Jeff Sommars Strong divisibility, cyclotomic polynomials, and iterated polynomials, Am. Math. Mon., Volume 120 (2013) no. 6, pp. 519-536 | DOI | MR | Zbl

[3] Sid Ali Bousla; Bakir Farhi Identities and estimations involving the least common multiple of strong divisibility sequences (2020) (https://arxiv.org/abs/1907.06700v2)

[4] Bakir Farhi An identity involving the least common multiple of binomial coefficients and its application, Am. Math. Mon., Volume 116 (2009) no. 9, pp. 836-839 | DOI | MR | Zbl

[5] Victor J. W. Guo On the least common multiple of q-binomial coefficients, Integers, Volume 10 (2010) no. 3, pp. 351-356 | MR | Zbl

[6] Ross Honsberger Mathematical gems III., The Dolciani Mathematical Expositions, 9, The Mathematical Association of America, 1985 | MR | Zbl

[7] Clark Kimberling Strong divisibility sequences and some conjectures, Fibonacci Q. (1979), pp. 13-17 | Zbl

[8] Péter Kiss; Ferenc Mátyás An asymptotic formula for π, J. Number Theory, Volume 31 (1989) no. 3, pp. 255-259 | DOI | Zbl

[9] Donald E. Knuth; Herbert S. Wilf The power of a prime that divides a generalized binomial coefficient, J. Reine Angew. Math., Volume 396 (1989), pp. 212-219 | MR | Zbl

[10] Yuri V. Matiyasevich; Richard K. Guy A New Formula for π, Am. Math. Mon., Volume 93 (1986), pp. 631-635 | Zbl

[11] Andrzej Nowicki Strong divisibility and lcm-sequences, Am. Math. Mon., Volume 122 (2015) no. 10, pp. 958-966 | DOI | MR | Zbl

[12] Paulo Ribenboim My numbers, my friends : Popular lectures on number theory, Springer, 2000 | Zbl

[13] James J. Sylvester On arithmetical series, Messenger Math., Volume 21 (1892), p. 1-19 ; 87–120 | Zbl

[14] Morgan Ward Note on divisibility sequences, Bull. Am. Math. Soc. (1936), pp. 843-845 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique