[Une note sur la platitude du cône tangeant à un barycentre]
Étant donné une mesure de probabilité
Given a probability measure
Révisé le :
Accepté le :
Publié le :
Thibaut Le Gouic 1

@article{CRMATH_2020__358_4_489_0, author = {Thibaut Le Gouic}, title = {A note on flatness of non separable tangent cone at a barycenter}, journal = {Comptes Rendus. Math\'ematique}, pages = {489--495}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.66}, language = {en}, }
Thibaut Le Gouic. A note on flatness of non separable tangent cone at a barycenter. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 489-495. doi : 10.5802/crmath.66. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.66/
[1] On the rate of convergence of empirical barycentres in metric spaces: curvature, convexity and extendible geodesics (2018) (https://arxiv.org/abs/1806.02740v1)
[2] Alexandrov geometry (2019) (http://arxiv.org/abs/1903.08539) | Zbl
[3] A course in metric geometry, Graduate Studies in Mathematics, 33, American Mathematical Society, 2001 | MR | Zbl
[4] On tangent cones of Alexandrov spaces with curvature bounded below, Manuscr. Math., Volume 103 (2000) no. 2, pp. 169-182 | DOI | MR | Zbl
[5] Kirszbraun’s theorem and metric spaces of bounded curvature, Geom. Funct. Anal., Volume 7 (1997) no. 3, pp. 535-560 | DOI | MR | Zbl
[6] Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space (2019) (https://arxiv.org/abs/1908.00828)
[7] Barycenters in Alexandrov spaces of curvature bounded below, Adv. Geom., Volume 12 (2012) no. 4, pp. 571-587 | MR | Zbl
[8] Metric spaces of lower bounded curvature, Expo. Math., Volume 17 (1999) no. 1, pp. 35-47 | MR | Zbl
[9] A rigidity theorem in Alexandrov spaces with lower curvature bound, Math. Ann., Volume 353 (2012) no. 2, pp. 305-331 | DOI | MR | Zbl
- A geometric condition for uniqueness of Fréchet means of persistence diagrams, Computational Geometry, Volume 128 (2025), p. 15 (Id/No 102162) | DOI:10.1016/j.comgeo.2024.102162 | Zbl:8008642
- Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space, Journal of the European Mathematical Society (JEMS), Volume 25 (2023) no. 6, pp. 2229-2250 | DOI:10.4171/jems/1234 | Zbl:7714611
- Convergence rates for empirical barycenters in metric spaces: curvature, convexity and extendable geodesics, Probability Theory and Related Fields, Volume 177 (2020) no. 1-2, pp. 323-368 | DOI:10.1007/s00440-019-00950-0 | Zbl:1442.51004
Cité par 3 documents. Sources : zbMATH
Commentaires - Politique