Comptes Rendus
Article de recherche - Informatique théorique
Consecutive Power Occurrences in Sturmian Words
[Occurrences consécutives de puissance dans les mots sturmiens]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1273-1278.

Nous montrons que la distance entre deux positions finales consécutives de cubes apparaissant dans un mot sturmien est toujours inférieure ou égale à 10 et que cette valeur est optimale, étendant ainsi un résultat de Rampersad, qui a démontré que cette distance est majorée par 9 pour le mot de Fibonacci. Nous donnons ensuite un résultat général montrant que pour tout e[1,(5+5)/2) il existe un entier naturel N, dépendant uniquement de e, tel que la distance entre deux positions finales consécutives de puissances e apparaissant dans un mot sturmien est uniformément majorée par N.

We show that every Sturmian word has the property that the distance between consecutive ending positions of cubes occurring in the word is always bounded by 10 and this bound is optimal, extending a result of Rampersad, who proved that the bound 9 holds for the Fibonacci word. We then give a general result showing that for every e[1,(5+5)/2) there is a natural number N, depending only on e, such that every Sturmian word has the property that the distance between consecutive ending positions of e-powers occurring in the word is uniformly bounded by N.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.644
Classification : 68R15
Keywords: Sturmian word, cube, periodicity, balanced word
Mot clés : Mot Sturmien, cube, périodicité, mot équilibré

Jason Bell 1 ; Chris Schulz 1 ; Jeffrey Shallit 2

1 University of Waterloo, Department of Pure Mathematics, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
2 University of Waterloo, School of Computer Science, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G10_1273_0,
     author = {Jason Bell and Chris Schulz and Jeffrey Shallit},
     title = {Consecutive {Power} {Occurrences} in {Sturmian} {Words}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1273--1278},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.644},
     language = {en},
}
TY  - JOUR
AU  - Jason Bell
AU  - Chris Schulz
AU  - Jeffrey Shallit
TI  - Consecutive Power Occurrences in Sturmian Words
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1273
EP  - 1278
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.644
LA  - en
ID  - CRMATH_2024__362_G10_1273_0
ER  - 
%0 Journal Article
%A Jason Bell
%A Chris Schulz
%A Jeffrey Shallit
%T Consecutive Power Occurrences in Sturmian Words
%J Comptes Rendus. Mathématique
%D 2024
%P 1273-1278
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.644
%G en
%F CRMATH_2024__362_G10_1273_0
Jason Bell; Chris Schulz; Jeffrey Shallit. Consecutive Power Occurrences in Sturmian Words. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1273-1278. doi : 10.5802/crmath.644. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.644/

[1] Aseem R. Baranwal Decision Algorithms for Ostrowski-automatic Sequences, Memoir, University of Waterloo, School of Computer Science (2020)

[2] Jean Berstel Fibonacci words—a survey, The Book of L (G. Rozenberg; A. Salomaa, eds.), Springer, 1986, pp. 13-27 | DOI | Zbl

[3] Aseem R. Baranwal; Jeffrey Shallit Critical exponent of infinite balanced words via the Pell number system, Combinatorics on words (Lecture Notes in Computer Science), Volume 11682, Springer, 2019, pp. 80-92 | DOI | MR | Zbl

[4] Aseem R. Baranwal; Luke Schaeffer; Jeffrey Shallit Ostrowski-automatic sequences: theory and applications, Theor. Comput. Sci., Volume 858 (2021), pp. 122-142 | DOI | MR | Zbl

[5] David Damanik; Daniel Lenz The index of Sturmian sequences, Eur. J. Comb., Volume 23 (2002) no. 1, pp. 23-29 | DOI | MR | Zbl

[6] H. Furstenberg Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | DOI | MR | Zbl

[7] Donald E. Knuth The art of computer programming. Vol. 1. Fundamental algorithms, Addison-Wesley Publishing Group, 1997, xx+650 pages | MR | Zbl

[8] Denes König Über eine Schlußweise aus dem Endlichen ins Unendliche, Acta Litt. Sci. Szeged, Volume 3 (1927), pp. 121-130 | Zbl

[9] M. Lothaire Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002, xiv+504 pages | DOI | MR | Zbl

[10] Hamoon Mousavi Automatic theorem proving in Walnut (2016) (https://arxiv.org/abs/1603.06017)

[11] Filippo Mignosi; Antonio Restivo; Sergio Salemi Periodicity and the golden ratio, Theor. Comput. Sci., Volume 204 (1998) no. 1-2, pp. 153-167 | DOI | MR | Zbl

[12] Narad Rampersad Prefixes of the Fibonacci word that end with a cube, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 323-332 | DOI | MR | Zbl

[13] Jeffrey Shallit Prefixes of the Fibonacci word (2023) (https://arxiv.org/abs/2302.04640)

[14] Jeffrey Shallit The logical approach to automatic sequences – exploring combinatorics on words with Walnut, London Mathematical Society Lecture Note Series, 482, Cambridge University Press, 2023, xv+358 pages | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique