[Occurrences consécutives de puissance dans les mots sturmiens]
Nous montrons que la distance entre deux positions finales consécutives de cubes apparaissant dans un mot sturmien est toujours inférieure ou égale à
We show that every Sturmian word has the property that the distance between consecutive ending positions of cubes occurring in the word is always bounded by
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.644
Keywords: Sturmian word, cube, periodicity, balanced word
Mots-clés : Mot Sturmien, cube, périodicité, mot équilibré
Jason Bell 1 ; Chris Schulz 1 ; Jeffrey Shallit 2

@article{CRMATH_2024__362_G10_1273_0, author = {Jason Bell and Chris Schulz and Jeffrey Shallit}, title = {Consecutive {Power} {Occurrences} in {Sturmian} {Words}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1273--1278}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.644}, zbl = {07939458}, language = {en}, }
Jason Bell; Chris Schulz; Jeffrey Shallit. Consecutive Power Occurrences in Sturmian Words. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1273-1278. doi : 10.5802/crmath.644. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.644/
[1] Decision Algorithms for Ostrowski-automatic Sequences, Memoir, University of Waterloo, School of Computer Science (2020)
[2] Fibonacci words—a survey, The Book of L (G. Rozenberg; A. Salomaa, eds.), Springer, 1986, pp. 13-27 | DOI | Zbl
[3] Critical exponent of infinite balanced words via the Pell number system, Combinatorics on words (Lecture Notes in Computer Science), Volume 11682, Springer, 2019, pp. 80-92 | DOI | MR | Zbl
[4] Ostrowski-automatic sequences: theory and applications, Theor. Comput. Sci., Volume 858 (2021), pp. 122-142 | DOI | MR | Zbl
[5] The index of Sturmian sequences, Eur. J. Comb., Volume 23 (2002) no. 1, pp. 23-29 | DOI | MR | Zbl
[6] Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | DOI | MR | Zbl
[7] The art of computer programming. Vol. 1. Fundamental algorithms, Addison-Wesley Publishing Group, 1997, xx+650 pages | MR | Zbl
[8] Über eine Schlußweise aus dem Endlichen ins Unendliche, Acta Litt. Sci. Szeged, Volume 3 (1927), pp. 121-130 | Zbl
[9] Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002, xiv+504 pages | DOI | MR | Zbl
[10] Automatic theorem proving in Walnut (2016) (https://arxiv.org/abs/1603.06017)
[11] Periodicity and the golden ratio, Theor. Comput. Sci., Volume 204 (1998) no. 1-2, pp. 153-167 | DOI | MR | Zbl
[12] Prefixes of the Fibonacci word that end with a cube, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 323-332 | DOI | MR | Zbl
[13] Prefixes of the Fibonacci word (2023) (https://arxiv.org/abs/2302.04640)
[14] The logical approach to automatic sequences – exploring combinatorics on words with Walnut, London Mathematical Society Lecture Note Series, 482, Cambridge University Press, 2023, xv+358 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique