[Occurrences consécutives de puissance dans les mots sturmiens]
Nous montrons que la distance entre deux positions finales consécutives de cubes apparaissant dans un mot sturmien est toujours inférieure ou égale à et que cette valeur est optimale, étendant ainsi un résultat de Rampersad, qui a démontré que cette distance est majorée par pour le mot de Fibonacci. Nous donnons ensuite un résultat général montrant que pour tout il existe un entier naturel , dépendant uniquement de , tel que la distance entre deux positions finales consécutives de puissances apparaissant dans un mot sturmien est uniformément majorée par .
We show that every Sturmian word has the property that the distance between consecutive ending positions of cubes occurring in the word is always bounded by and this bound is optimal, extending a result of Rampersad, who proved that the bound holds for the Fibonacci word. We then give a general result showing that for every there is a natural number , depending only on , such that every Sturmian word has the property that the distance between consecutive ending positions of -powers occurring in the word is uniformly bounded by .
Révisé le :
Accepté le :
Publié le :
Keywords: Sturmian word, cube, periodicity, balanced word
Mot clés : Mot Sturmien, cube, périodicité, mot équilibré
Jason Bell 1 ; Chris Schulz 1 ; Jeffrey Shallit 2
@article{CRMATH_2024__362_G10_1273_0, author = {Jason Bell and Chris Schulz and Jeffrey Shallit}, title = {Consecutive {Power} {Occurrences} in {Sturmian} {Words}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1273--1278}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.644}, language = {en}, }
Jason Bell; Chris Schulz; Jeffrey Shallit. Consecutive Power Occurrences in Sturmian Words. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1273-1278. doi : 10.5802/crmath.644. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.644/
[1] Decision Algorithms for Ostrowski-automatic Sequences, Memoir, University of Waterloo, School of Computer Science (2020)
[2] Fibonacci words—a survey, The Book of L (G. Rozenberg; A. Salomaa, eds.), Springer, 1986, pp. 13-27 | DOI | Zbl
[3] Critical exponent of infinite balanced words via the Pell number system, Combinatorics on words (Lecture Notes in Computer Science), Volume 11682, Springer, 2019, pp. 80-92 | DOI | MR | Zbl
[4] Ostrowski-automatic sequences: theory and applications, Theor. Comput. Sci., Volume 858 (2021), pp. 122-142 | DOI | MR | Zbl
[5] The index of Sturmian sequences, Eur. J. Comb., Volume 23 (2002) no. 1, pp. 23-29 | DOI | MR | Zbl
[6] Recurrence in ergodic theory and combinatorial number theory, M. B. Porter Lectures, Princeton University Press, 1981, xi+203 pages | DOI | MR | Zbl
[7] The art of computer programming. Vol. 1. Fundamental algorithms, Addison-Wesley Publishing Group, 1997, xx+650 pages | MR | Zbl
[8] Über eine Schlußweise aus dem Endlichen ins Unendliche, Acta Litt. Sci. Szeged, Volume 3 (1927), pp. 121-130 | Zbl
[9] Algebraic combinatorics on words, Encyclopedia of Mathematics and Its Applications, 90, Cambridge University Press, 2002, xiv+504 pages | DOI | MR | Zbl
[10] Automatic theorem proving in Walnut (2016) (https://arxiv.org/abs/1603.06017)
[11] Periodicity and the golden ratio, Theor. Comput. Sci., Volume 204 (1998) no. 1-2, pp. 153-167 | DOI | MR | Zbl
[12] Prefixes of the Fibonacci word that end with a cube, C. R. Math. Acad. Sci. Paris, Volume 361 (2023), pp. 323-332 | DOI | MR | Zbl
[13] Prefixes of the Fibonacci word (2023) (https://arxiv.org/abs/2302.04640)
[14] The logical approach to automatic sequences – exploring combinatorics on words with Walnut, London Mathematical Society Lecture Note Series, 482, Cambridge University Press, 2023, xv+358 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique