Comptes Rendus
Article de recherche - Géométrie et Topologie
K-cowaist of manifolds with boundary
[K-cowaist des variétés à bord]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1349-1356.

Nous étendons l’inégalité de K-cowaist aux opérateurs de Dirac généralisés au sens de Gromov et Lawson et étudions les applications aux variétés à bord.

We extend the K-cowaist inequality to generalized Dirac operators in the sense of Gromov and Lawson and study applications to manifolds with boundary.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.646
Classification : 53C21, 53C23, 53C27, 58J20
Keywords: Manifolds with boundary, lower scalar curvature bounds, lower mean curvature bounds, Atiyah–Patodi–Singer index formula, $K$-cowaist, $\omega $-cowaist
Mot clés : Variétés à bord, minorations de la courbure scalaire, minorations de la courbure moyenne, le théorème de l’indice d’Atiyah–Patodi–Singer, $K$-cowaist, $\omega $-cowaist

Christian Bär 1 ; Bernhard Hanke 2

1 Universität Potsdam, Institut für Mathematik, 14476 Potsdam, Germany
2 Universität Augsburg, Institut für Mathematik, 86135 Augsburg, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1349_0,
     author = {Christian B\"ar and Bernhard Hanke},
     title = {\protect\emph{K}-cowaist of manifolds with boundary},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1349--1356},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.646},
     language = {en},
}
TY  - JOUR
AU  - Christian Bär
AU  - Bernhard Hanke
TI  - K-cowaist of manifolds with boundary
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1349
EP  - 1356
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.646
LA  - en
ID  - CRMATH_2024__362_G11_1349_0
ER  - 
%0 Journal Article
%A Christian Bär
%A Bernhard Hanke
%T K-cowaist of manifolds with boundary
%J Comptes Rendus. Mathématique
%D 2024
%P 1349-1356
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.646
%G en
%F CRMATH_2024__362_G11_1349_0
Christian Bär; Bernhard Hanke. K-cowaist of manifolds with boundary. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1349-1356. doi : 10.5802/crmath.646. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.646/

[1] M. F. Atiyah; V. K. Patodi; I. M. Singer Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl

[2] M. F. Atiyah K-theory. With notes by D. W. Anderson, Advanced Book Classics, Addison-Wesley Publishing Company, 1989, xx+216 pages | MR | Zbl

[3] Christian Bär; Werner Ballmann Guide to elliptic boundary value problems for Dirac-type operators, Arbeitstagung Bonn 2013 (Progress in Mathematics), Volume 319, Birkhäuser/Springer, 2016, pp. 43-80 | DOI | MR | Zbl

[4] Christian Bär; Bernhard Hanke Boundary conditions for scalar curvature, Perspectives in scalar curvature. Vol. 2, World Scientific, 2023, pp. 325-377 | DOI | MR | Zbl

[5] Yoshiyasu Fukumoto Invariance of finiteness of K-area under surgery, Geom. Dedicata, Volume 176 (2015), pp. 175-183 | DOI | MR | Zbl

[6] Mikhael Gromov; H. Blaine Lawson Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci., Volume 58 (1983), pp. 83-196 | DOI | Numdam | MR | Zbl

[7] Mikhael Gromov Four lectures on scalar curvature, Perspectives in scalar curvature. Vol. 1, World Scientific, 2023, pp. 1-514 | DOI | MR | Zbl

[8] Mikhael Gromov Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) (Progress in Mathematics), Volume 132, Birkhäuser, 1996, pp. 1-213 | DOI | MR | Zbl

[9] Benedikt Hunger Almost flat bundles and homological invariance of infinite K-area, New York J. Math., Volume 25 (2019), pp. 687-722 | MR | Zbl

[10] Mario Listing Homology of finite K-area, Math. Z., Volume 275 (2013) no. 1-2, pp. 91-107 | DOI | MR | Zbl

[11] H. Blaine Lawson; Marie-Louise Michelsohn Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, 1989, xii+427 pages | MR | Zbl

[12] Xiangsheng Wang On a relation between the K-cowaist and the A ^-cowaist, Proc. Am. Math. Soc., Volume 151 (2023) no. 11, pp. 4983-4990 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique