[K-cowaist des variétés à bord]
Nous étendons l’inégalité de -cowaist aux opérateurs de Dirac généralisés au sens de Gromov et Lawson et étudions les applications aux variétés à bord.
We extend the -cowaist inequality to generalized Dirac operators in the sense of Gromov and Lawson and study applications to manifolds with boundary.
Révisé le :
Accepté le :
Publié le :
Keywords: Manifolds with boundary, lower scalar curvature bounds, lower mean curvature bounds, Atiyah–Patodi–Singer index formula, $K$-cowaist, $\omega $-cowaist
Mot clés : Variétés à bord, minorations de la courbure scalaire, minorations de la courbure moyenne, le théorème de l’indice d’Atiyah–Patodi–Singer, $K$-cowaist, $\omega $-cowaist
Christian Bär 1 ; Bernhard Hanke 2
@article{CRMATH_2024__362_G11_1349_0, author = {Christian B\"ar and Bernhard Hanke}, title = {\protect\emph{K}-cowaist of manifolds with boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {1349--1356}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.646}, language = {en}, }
Christian Bär; Bernhard Hanke. K-cowaist of manifolds with boundary. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1349-1356. doi : 10.5802/crmath.646. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.646/
[1] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[2] -theory. With notes by D. W. Anderson, Advanced Book Classics, Addison-Wesley Publishing Company, 1989, xx+216 pages | MR | Zbl
[3] Guide to elliptic boundary value problems for Dirac-type operators, Arbeitstagung Bonn 2013 (Progress in Mathematics), Volume 319, Birkhäuser/Springer, 2016, pp. 43-80 | DOI | MR | Zbl
[4] Boundary conditions for scalar curvature, Perspectives in scalar curvature. Vol. 2, World Scientific, 2023, pp. 325-377 | DOI | MR | Zbl
[5] Invariance of finiteness of -area under surgery, Geom. Dedicata, Volume 176 (2015), pp. 175-183 | DOI | MR | Zbl
[6] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci., Volume 58 (1983), pp. 83-196 | DOI | Numdam | MR | Zbl
[7] Four lectures on scalar curvature, Perspectives in scalar curvature. Vol. 1, World Scientific, 2023, pp. 1-514 | DOI | MR | Zbl
[8] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) (Progress in Mathematics), Volume 132, Birkhäuser, 1996, pp. 1-213 | DOI | MR | Zbl
[9] Almost flat bundles and homological invariance of infinite -area, New York J. Math., Volume 25 (2019), pp. 687-722 | MR | Zbl
[10] Homology of finite -area, Math. Z., Volume 275 (2013) no. 1-2, pp. 91-107 | DOI | MR | Zbl
[11] Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, 1989, xii+427 pages | MR | Zbl
[12] On a relation between the -cowaist and the -cowaist, Proc. Am. Math. Soc., Volume 151 (2023) no. 11, pp. 4983-4990 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique