[K-cowaist des variétés à bord]
Nous étendons l’inégalité de
We extend the
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.646
Keywords: Manifolds with boundary, lower scalar curvature bounds, lower mean curvature bounds, Atiyah–Patodi–Singer index formula,
Mots-clés : Variétés à bord, minorations de la courbure scalaire, minorations de la courbure moyenne, le théorème de l’indice d’Atiyah–Patodi–Singer,
Christian Bär 1 ; Bernhard Hanke 2

@article{CRMATH_2024__362_G11_1349_0, author = {Christian B\"ar and Bernhard Hanke}, title = {\protect\emph{K}-cowaist of manifolds with boundary}, journal = {Comptes Rendus. Math\'ematique}, pages = {1349--1356}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.646}, zbl = {07945478}, language = {en}, }
Christian Bär; Bernhard Hanke. K-cowaist of manifolds with boundary. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1349-1356. doi : 10.5802/crmath.646. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.646/
[1] Spectral asymmetry and Riemannian geometry. I, Math. Proc. Camb. Philos. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[2]
[3] Guide to elliptic boundary value problems for Dirac-type operators, Arbeitstagung Bonn 2013 (Progress in Mathematics), Volume 319, Birkhäuser/Springer, 2016, pp. 43-80 | DOI | MR | Zbl
[4] Boundary conditions for scalar curvature, Perspectives in scalar curvature. Vol. 2, World Scientific, 2023, pp. 325-377 | DOI | MR | Zbl
[5] Invariance of finiteness of
[6] Positive scalar curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math., Inst. Hautes Étud. Sci., Volume 58 (1983), pp. 83-196 | DOI | Numdam | MR | Zbl
[7] Four lectures on scalar curvature, Perspectives in scalar curvature. Vol. 1, World Scientific, 2023, pp. 1-514 | DOI | MR | Zbl
[8] Positive curvature, macroscopic dimension, spectral gaps and higher signatures, Functional analysis on the eve of the 21st century, Vol. II (New Brunswick, NJ, 1993) (Progress in Mathematics), Volume 132, Birkhäuser, 1996, pp. 1-213 | DOI | MR | Zbl
[9] Almost flat bundles and homological invariance of infinite
[10] Homology of finite
[11] Spin geometry, Princeton Mathematical Series, 38, Princeton University Press, 1989, xii+427 pages | MR | Zbl
[12] On a relation between the
Cité par Sources :
Commentaires - Politique