Comptes Rendus
Research article - Partial differential equations
Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1357-1364.

In this note, we study non-uniqueness for minimizing harmonic maps from B 3 to § 2 . We show that every boundary map can be modified to a boundary map that admits multiple minimizers of the Dirichlet energy by a small W 1,p -change for p<2. This strengthens a remark by the second-named author and Strzelecki. The main novel ingredient is a homotopy construction, which is the answer to an easier variant of a challenging question regarding the existence of a norm control for homotopies between W 1,p maps.

Dans cette note, nous étudions la non-unicité pour les applications harmoniques de B 3 dans 𝕊 2 . Nous montrons que toute application au bord peut être modifiée en une application au bord qui admet plusieurs minimiseurs de l’énergie de Dirichlet au moyen d’un petit changement W 1,p pour p<2. Ceci renforce la conclusion d’une remarque du second auteur avec Strzelecki. L’ingrédient nouveau principal est une construction d’homotopie, qui répond à une variante simplifiée d’une question difficile concernant l’existence d’un contrôle sur la norme des homotopies entre applications W 1,p .

Received:
Accepted:
Revised after acceptance:
Published online:
DOI: 10.5802/crmath.648
Classification: 58E20, 46E35
Keywords: Harmonic maps, homotopy theory
Mots-clés : Applications harmoniques, théorie de l’homotopie

Antoine Detaille 1; Katarzyna Mazowiecka 2

1 Universite Claude Bernard Lyon 1, ICJ UMR5208, CNRS, École Centrale de Lyon, INSA Lyon, Université Jean Monnet, 69622 Villeurbanne, France.
2 Institute of Mathematics,University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G11_1357_0,
     author = {Antoine Detaille and Katarzyna Mazowiecka},
     title = {Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1357--1364},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.648},
     mrnumber = {4824932},
     zbl = {07945479},
     language = {en},
}
TY  - JOUR
AU  - Antoine Detaille
AU  - Katarzyna Mazowiecka
TI  - Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1357
EP  - 1364
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.648
LA  - en
ID  - CRMATH_2024__362_G11_1357_0
ER  - 
%0 Journal Article
%A Antoine Detaille
%A Katarzyna Mazowiecka
%T Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere
%J Comptes Rendus. Mathématique
%D 2024
%P 1357-1364
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.648
%G en
%F CRMATH_2024__362_G11_1357_0
Antoine Detaille; Katarzyna Mazowiecka. Generic non-uniqueness of minimizing harmonic maps from a ball to a sphere. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1357-1364. doi : 10.5802/crmath.648. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.648/

[1] Frederick J. Almgren; Elliott H. Lieb Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds, Ann. Math., Volume 128 (1988) no. 3, pp. 483-530 | DOI | MR | Zbl

[2] Fabrice Bethuel; Xiaomin Zheng Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal., Volume 80 (1988) no. 1, pp. 60-75 | DOI | MR | Zbl

[3] Robert Hardt; David Kinderlehrer Mathematical questions of liquid crystal theory, Nonlinear partial differential equations and their applications. Collège de France Seminar, Vol. IX (Paris, 1985–1986) (Pitman Research Notes in Mathematics Series), Volume 181, Longman Sci. Tech., 1988, pp. 276-289 | MR | Zbl

[4] Robert Hardt; David Kinderlehrer; Mitchell Luskin Remarks about the mathematical theory of liquid crystals, Calculus of variations and partial differential equations (Trento, 1986) (Lecture Notes in Mathematics), Volume 1340, Springer, 1988, pp. 123-138 | DOI | MR | Zbl

[5] Robert Hardt; David Kinderlehrer; Fang-Hua Lin The variety of configurations of static liquid crystals, Variational methods (Paris, 1988) (Progress in Nonlinear Differential Equations and their Applications), Volume 4, Birkhäuser, 1990, pp. 115-131 | DOI | MR | Zbl

[6] Robert Hardt; Fang-Hua Lin Mappings minimizing the L p norm of the gradient, Commun. Pure Appl. Math., Volume 40 (1987) no. 5, pp. 555-588 | DOI | MR | Zbl

[7] Robert Hardt; Fang-Hua Lin Stability of singularities of minimizing harmonic maps, J. Differ. Geom., Volume 29 (1989) no. 1, pp. 113-123 | DOI | MR | Zbl

[8] Siran Li Stability of minimising harmonic maps under W 1,p perturbations of boundary data: p2, J. Differ. Equations, Volume 296 (2021), pp. 279-298 | DOI | MR | Zbl

[9] Katarzyna Mazowiecka Singularities of harmonic and biharmonic maps into compact manifolds, Ph. D. Thesis, University of Warsaw (2017)

[10] Katarzyna Mazowiecka; Michał Miśkiewicz; Armin Schikorra On the size of the singular set of minimizing harmonic maps (to appear in Mem. Amer. Math. Soc.)

[11] Katarzyna Mazowiecka; Paweł Strzelecki The Lavrentiev gap phenomenon for harmonic maps into spheres holds on a dense set of zero degree boundary data, Adv. Calc. Var., Volume 10 (2017) no. 3, pp. 303-314 | DOI | MR | Zbl

[12] Tristan Rivière Infinités des applications harmoniques à valeur dans une sphère pour une condition au bord donnée, Ph. D. Thesis, Université Paris VI (1993)

[13] Richard Schoen; Karen Uhlenbeck A regularity theory for harmonic maps, J. Differ. Geom., Volume 17 (1982) no. 2, pp. 307-335 | DOI | MR | Zbl

[14] Richard Schoen; Karen Uhlenbeck Boundary regularity and the Dirichlet problem for harmonic maps, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 253-268 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy