[Exposant maximal des cônes de Lorentz]
Nous démontrons que l’exposant maximal (c’est-à-dire le nombre minimal d’itérations requises pour qu’une application primitive devienne strictement positive) du cône de Lorentz de dimension est égal à . Nous montrons également que l’exposant optimal dans l’inégalité de Wielandt quantique pour des canaux agissant sur un qubit est égal à .
We show that the maximal exponent (i.e., the minimum number of iterations required for a primitive map to become strictly positive) of the -dimensional Lorentz cone is equal to . As a byproduct, we show that the optimal exponent in the quantum Wielandt inequality for qubit channels is equal to .
Révisé le :
Accepté le :
Publié le :
Keywords: Lorentz cone, Maximal exponent, Quantum Wielandt inequality
Mot clés : Cône de Lorentz, exposant maximal, inégalité de Wielandt quantique
Guillaume Aubrun 1 ; Jing Bai 2, 1
@article{CRMATH_2024__362_G11_1379_0, author = {Guillaume Aubrun and Jing Bai}, title = {Maximal exponent of the {Lorentz} cones}, journal = {Comptes Rendus. Math\'ematique}, pages = {1379--1388}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.649}, language = {en}, }
Guillaume Aubrun; Jing Bai. Maximal exponent of the Lorentz cones. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1379-1388. doi : 10.5802/crmath.649. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.649/
[1] Alice and Bob meet Banach. The interface of asymptotic geometric analysis and quantum information theory, Mathematical Surveys and Monographs, 223, American Mathematical Society, 2017, xxi+414 pages | DOI | MR | Zbl
[2] A universal set of qubit quantum channels, J. Phys. A. Math. Gen., Volume 47 (2014) no. 13, 135302, 26 pages | DOI | MR | Zbl
[3] Nonlinear functional analysis, Springer, 1985, xiv+450 pages | DOI | MR | Zbl
[4] Matrix analysis, Cambridge University Press, 1990, xiv+561 pages (Corrected reprint of the 1985 original) | MR | Zbl
[5] Maximal exponents of polyhedral cones (III), Trans. Am. Math. Soc., Volume 365 (2013) no. 7, pp. 3535-3573 | DOI | MR | Zbl
[6] Maximal exponents of polyhedral cones. I, J. Math. Anal. Appl., Volume 365 (2010) no. 2, pp. 570-583 | DOI | MR | Zbl
[7] Maximal exponents of polyhedral cones. II, Linear Algebra Appl., Volume 432 (2010) no. 11, pp. 2861-2878 | DOI | MR | Zbl
[8] Quantum version of Wielandt’s inequality revisited, IEEE Trans. Inf. Theory, Volume 65 (2019) no. 8, pp. 5239-5242 | DOI | MR | Zbl
[9] Norms and the spectral radius of matrices, Czech. Math. J., Volume 12(87) (1962), pp. 555-557 | DOI | MR | Zbl
[10] Critical exponents, Handbook of convex geometry, Vol. A, B, North-Holland, 1993, pp. 1237-1257 | DOI | MR | Zbl
[11] A new bound on quantum Wielandt inequality, IEEE Trans. Inf. Theory, Volume 66 (2020) no. 1, pp. 147-154 | DOI | MR | Zbl
[12] Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, 149, Springer, 2019, xii+800 pages | DOI | MR | Zbl
[13] Wielandt’s proof of the exponent inequality for primitive nonnegative matrices, Linear Algebra Appl., Volume 353 (2002), pp. 5-10 | DOI | MR | Zbl
[14] Growth in Matrix Algebras and a Conjecture of Pérez-García, Verstraete, Wolf and Cirac (2023) (https://vixra.org/abs/2308.0028)
[15] A quantum version of Wielandt’s inequality, IEEE Trans. Inf. Theory, Volume 56 (2010) no. 9, pp. 4668-4673 | DOI | MR | Zbl
[16] Unzerlegbare, nicht negative Matrizen, Math. Z., Volume 52 (1950), pp. 642-648 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique