Comptes Rendus
Article de recherche - Analyse et géométrie complexes
Asymptotic behaviour of the sectional ring
[Comportement asymptotique de l’anneau canonique d’un fibré en droites]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1389-1397.

La théorie du corps d’Okounkov est un outil puissant pour analyser le comportement asymptotique de l’anneau canonique d’un fibré en droites sur une variété projective. Dans cette note, combiné avec la réduction algébrique, nous étudions le comportement asymptotique de l’anneau canonique d’un fibré en droites sur tout espace complexe compact, normal et irréductible arbitraire.

The theory of the Okounkov body is a usual tool for analyzing the asymptotic behaviour of the sectional ring of a line bundle over a projective manifold. In this note, combined with the algebraic reduction, we study the asymptotic behaviour of the sectional ring of a line bundle over any arbitrary compact, normal, irreducible complex space.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.651
Classification : 32C15, 32J18, 32S20
Keywords: Okounkov body, canonical ring, algebraic reduction
Mot clés : Corps d’Okounkov, anneau canonique, réduction algébrique

Xiaojun Wu 1

1 Universität Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1389_0,
     author = {Xiaojun Wu},
     title = {Asymptotic behaviour of the sectional ring},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1389--1397},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.651},
     language = {en},
}
TY  - JOUR
AU  - Xiaojun Wu
TI  - Asymptotic behaviour of the sectional ring
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1389
EP  - 1397
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.651
LA  - en
ID  - CRMATH_2024__362_G11_1389_0
ER  - 
%0 Journal Article
%A Xiaojun Wu
%T Asymptotic behaviour of the sectional ring
%J Comptes Rendus. Mathématique
%D 2024
%P 1389-1397
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.651
%G en
%F CRMATH_2024__362_G11_1389_0
Xiaojun Wu. Asymptotic behaviour of the sectional ring. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1389-1397. doi : 10.5802/crmath.651. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.651/

[1] Aldo Andreotti; Wilhelm Stoll Analytic and algebraic dependence of meromorphic functions, Lecture Notes in Mathematics, 234, Springer, 1971, iii+390 pages | DOI | MR | Zbl

[2] Sébastien Boucksom; Jean-Pierre Demailly; Mihai Păun; Thomas Peternell The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl

[3] Sébastien Boucksom; Philippe Eyssidieux; Vincent Guedj; Ahmed Zeriahi Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | MR | Zbl

[4] Sébastien Boucksom; Charles Favre; Mattias Jonsson Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl

[5] Sébastien Boucksom Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl

[6] Frédéric Campana Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl

[7] Frédéric Campana Réduction algébrique d’un morphisme faiblement Kählérien propre et applications, Math. Ann., Volume 256 (1981) no. 2, pp. 157-189 | DOI | MR | Zbl

[8] Frédéric Campana Sur les diviseurs non-polaires d’un espace analytique compact, J. Reine Angew. Math., Volume 332 (1982), pp. 126-133 | DOI | MR | Zbl

[9] Jean-Pierre Demailly; Lawrence Ein; Robert Lazarsfeld A subadditivity property of multiplier ideals. Dedicated to William Fulton on the occasion of his 60th birthday, Mich. Math. J., Volume 48 (2000), pp. 137-156 | DOI | MR | Zbl

[10] Jean-Pierre Demailly Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press; Higher Education Press, 2012, viii+231 pages | MR | Zbl

[11] Gerd Fischer; Otto Forster Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. Reine Angew. Math., Volume 306 (1979), pp. 88-93 | MR | Zbl

[12] Heisuke Hironaka Resolution of singularities of an algebraic variety over a field of characteristic zero. I, Ann. Math., Volume 79 (1964), pp. 109-203 | DOI | MR | Zbl

[13] Heisuke Hironaka Resolution of singularities of an algebraic variety over a field of characteristic zero.II, Ann. Math., Volume 79 (1964), pp. 205-326 | DOI | MR | Zbl

[14] Heisuke Hironaka Flattening theorem in complex-analytic geometry, Am. J. Math., Volume 97 (1975), pp. 503-547 | DOI | MR | Zbl

[15] Shigeru Iitaka On D-dimensions of algebraic varieties, J. Math. Soc. Japan, Volume 23 (1971), pp. 356-373 | DOI | MR | Zbl

[16] Kiumars Kaveh; A. G. Khovanskii Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math., Volume 176 (2012) no. 2, pp. 925-978 | DOI | MR | Zbl

[17] Robert Lazarsfeld; Mircea Mustaţă Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl

[18] Andrei Okounkov Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) (Progress in Mathematics), Volume 213, Birkhäuser, 2003, pp. 329-347 | DOI | MR | Zbl

[19] Andrei Okounkov Brunn–Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | DOI | MR | Zbl

[20] Reinhold Remmert Meromorphe Funktionen in kompakten komplexen Räumen, Math. Ann., Volume 132 (1956), pp. 277-288 | DOI | MR | Zbl

[21] Walter Thimm Meromorphe Abbildungen von Riemannschen Bereichen, Math. Z., Volume 60 (1954), pp. 435-457 | DOI | MR | Zbl

[22] Kenji Ueno Classification theory of algebraic varieties and compact complex spaces. Notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, 439, Springer, 1975, xix+278 pages | MR | Zbl

Cité par Sources :

Commentaires - Politique