[Comportement asymptotique de l’anneau canonique d’un fibré en droites]
La théorie du corps d’Okounkov est un outil puissant pour analyser le comportement asymptotique de l’anneau canonique d’un fibré en droites sur une variété projective. Dans cette note, combiné avec la réduction algébrique, nous étudions le comportement asymptotique de l’anneau canonique d’un fibré en droites sur tout espace complexe compact, normal et irréductible arbitraire.
The theory of the Okounkov body is a usual tool for analyzing the asymptotic behaviour of the sectional ring of a line bundle over a projective manifold. In this note, combined with the algebraic reduction, we study the asymptotic behaviour of the sectional ring of a line bundle over any arbitrary compact, normal, irreducible complex space.
Révisé le :
Accepté le :
Publié le :
Keywords: Okounkov body, canonical ring, algebraic reduction
Mot clés : Corps d’Okounkov, anneau canonique, réduction algébrique
Xiaojun Wu 1
@article{CRMATH_2024__362_G11_1389_0, author = {Xiaojun Wu}, title = {Asymptotic behaviour of the sectional ring}, journal = {Comptes Rendus. Math\'ematique}, pages = {1389--1397}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.651}, language = {en}, }
Xiaojun Wu. Asymptotic behaviour of the sectional ring. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1389-1397. doi : 10.5802/crmath.651. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.651/
[1] Analytic and algebraic dependence of meromorphic functions, Lecture Notes in Mathematics, 234, Springer, 1971, iii+390 pages | DOI | MR | Zbl
[2] The pseudo-effective cone of a compact Kähler manifold and varieties of negative Kodaira dimension, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 201-248 | DOI | MR | Zbl
[3] Monge–Ampère equations in big cohomology classes, Acta Math., Volume 205 (2010) no. 2, pp. 199-262 | DOI | MR | Zbl
[4] Differentiability of volumes of divisors and a problem of Teissier, J. Algebr. Geom., Volume 18 (2009) no. 2, pp. 279-308 | DOI | MR | Zbl
[5] Divisorial Zariski decompositions on compact complex manifolds, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 1, pp. 45-76 | DOI | Numdam | MR | Zbl
[6] Orbifolds, special varieties and classification theory, Ann. Inst. Fourier, Volume 54 (2004) no. 3, pp. 499-630 | DOI | Numdam | MR | Zbl
[7] Réduction algébrique d’un morphisme faiblement Kählérien propre et applications, Math. Ann., Volume 256 (1981) no. 2, pp. 157-189 | DOI | MR | Zbl
[8] Sur les diviseurs non-polaires d’un espace analytique compact, J. Reine Angew. Math., Volume 332 (1982), pp. 126-133 | DOI | MR | Zbl
[9] A subadditivity property of multiplier ideals. Dedicated to William Fulton on the occasion of his 60th birthday, Mich. Math. J., Volume 48 (2000), pp. 137-156 | DOI | MR | Zbl
[10] Analytic methods in algebraic geometry, Surveys of Modern Mathematics, 1, International Press; Higher Education Press, 2012, viii+231 pages | MR | Zbl
[11] Ein Endlichkeitssatz für Hyperflächen auf kompakten komplexen Räumen, J. Reine Angew. Math., Volume 306 (1979), pp. 88-93 | MR | Zbl
[12] Resolution of singularities of an algebraic variety over a field of characteristic zero. I, Ann. Math., Volume 79 (1964), pp. 109-203 | DOI | MR | Zbl
[13] Resolution of singularities of an algebraic variety over a field of characteristic zero.II, Ann. Math., Volume 79 (1964), pp. 205-326 | DOI | MR | Zbl
[14] Flattening theorem in complex-analytic geometry, Am. J. Math., Volume 97 (1975), pp. 503-547 | DOI | MR | Zbl
[15] On -dimensions of algebraic varieties, J. Math. Soc. Japan, Volume 23 (1971), pp. 356-373 | DOI | MR | Zbl
[16] Newton–Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math., Volume 176 (2012) no. 2, pp. 925-978 | DOI | MR | Zbl
[17] Convex bodies associated to linear series, Ann. Sci. Éc. Norm. Supér., Volume 42 (2009) no. 5, pp. 783-835 | DOI | Numdam | MR | Zbl
[18] Why would multiplicities be log-concave?, The orbit method in geometry and physics (Marseille, 2000) (Progress in Mathematics), Volume 213, Birkhäuser, 2003, pp. 329-347 | DOI | MR | Zbl
[19] Brunn–Minkowski inequality for multiplicities, Invent. Math., Volume 125 (1996) no. 3, pp. 405-411 | DOI | MR | Zbl
[20] Meromorphe Funktionen in kompakten komplexen Räumen, Math. Ann., Volume 132 (1956), pp. 277-288 | DOI | MR | Zbl
[21] Meromorphe Abbildungen von Riemannschen Bereichen, Math. Z., Volume 60 (1954), pp. 435-457 | DOI | MR | Zbl
[22] Classification theory of algebraic varieties and compact complex spaces. Notes written in collaboration with P. Cherenack, Lecture Notes in Mathematics, 439, Springer, 1975, xix+278 pages | MR | Zbl
Cité par Sources :
Commentaires - Politique