[Borne inférieure à la vitesse critique d’une impureté dans un condensat de Bose–Einstein]
In the Bogoliubov–Fröhlich model, we prove that an impurity immersed in a Bose–Einstein condensate forms a stable quasi-particle when the total momentum is less than its mass times the speed of sound. The system thus exhibits superfluid behavior, as this quasi-particle does not experience friction. We do not assume any infrared or ultraviolet regularization of the model, which contains massless excitations and point-like interactions.
Dans le modèle Bogoliubov–Fröhlich, nous prouvons qu’une impureté immergée dans un condensat de Bose–Einstein forme une quasi-particule stable lorsque la quantité de mouvement totale est inférieure à sa masse multipliée par la vitesse du son. Le système présente donc un comportement superfluide, car cette quasi-particule ne subit pas de frottement. Nous ne supposons aucune régularisation infrarouge ou ultraviolette du modèle, qui contient des excitations sans masse et des interactions ponctuelles.
Accepté le :
Publié le :
DOI : 10.5802/crmath.652
Keywords: Polaron, energy-momentum spectrum, Cherenkov transition, renormalization
Mots-clés : Polaron, spectre énergie-impulsion, transition Cherenkov, renormalisation
Benjamin Hinrichs 1 ; Jonas Lampart 2

@article{CRMATH_2024__362_G11_1399_0, author = {Benjamin Hinrichs and Jonas Lampart}, title = {A {Lower} {Bound} on the {Critical} {Momentum} of an {Impurity} in a {Bose{\textendash}Einstein} {Condensate}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1399--1411}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.652}, zbl = {07945483}, language = {en}, }
TY - JOUR AU - Benjamin Hinrichs AU - Jonas Lampart TI - A Lower Bound on the Critical Momentum of an Impurity in a Bose–Einstein Condensate JO - Comptes Rendus. Mathématique PY - 2024 SP - 1399 EP - 1411 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.652 LA - en ID - CRMATH_2024__362_G11_1399_0 ER -
Benjamin Hinrichs; Jonas Lampart. A Lower Bound on the Critical Momentum of an Impurity in a Bose–Einstein Condensate. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1399-1411. doi : 10.5802/crmath.652. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.652/
[1] A Hamiltonian model for linear friction in a homogeneous medium, Commun. Math. Phys., Volume 229 (2002) no. 3, pp. 511-542 | DOI | MR | Zbl
[2] Quantum electrodynamics of confined nonrelativistic particles, Adv. Math., Volume 137 (1998) no. 2, pp. 299-395 | DOI | MR | Zbl
[3] Ground state properties of the Nelson Hamiltonian: a Gibbs measure-based approach, Rev. Math. Phys., Volume 14 (2002) no. 2, pp. 173-198 | arXiv | DOI | MR | Zbl
[4] The ground state problem for a quantum Hamiltonian model describing friction, Can. J. Math., Volume 59 (2007) no. 5, pp. 897-916 | DOI | MR | Zbl
[5] Quasiparticle Properties of a Mobile Impurity in a Bose–Einstein Condensate, Phys. Rev. Lett., Volume 115 (2015), 160401, 5 pages | arXiv | DOI
[6] Absence of ground states in the translation invariant massless Nelson model, Ann. Henri Poincaré, Volume 21 (2020) no. 8, pp. 2655-2679 | arXiv | DOI | MR | Zbl
[7] Spectral analysis of a model for quantum friction, Rev. Math. Phys., Volume 29 (2017) no. 6, 1750019, 49 pages | arXiv | DOI | MR | Zbl
[8] Effective dynamics of a tracer particle interacting with an ideal Bose gas, Commun. Math. Phys., Volume 328 (2014) no. 2, pp. 597-624 | arXiv | DOI | MR | Zbl
[9] Asymptotic completeness in quantum field theory. Massive Pauli–Fierz Hamiltonians, Rev. Math. Phys., Volume 11 (1999) no. 4, pp. 383-450 | DOI | MR | Zbl
[10] Absence of ground states in the renormalized massless translation-invariant Nelson model, Rev. Math. Phys., Volume 34 (2022) no. 10, 2250033, 42 pages | DOI | MR | Zbl
[11] Coulomb scattering in the massless Nelson model I. Foundations of two-electron scattering, J. Stat. Phys., Volume 154 (2014) no. 1-2, pp. 543-587 | arXiv | DOI | MR | Zbl
[12] Effective mass of the polaron – revisited, Ann. Henri Poincaré, Volume 21 (2020) no. 5, pp. 1573-1594 | arXiv | DOI | MR | Zbl
[13] Hamiltonian dynamics of a particle interacting with a wave field, Commun. Partial Differ. Equations, Volume 38 (2013) no. 12, pp. 2155-2198 | arXiv | DOI | MR | Zbl
[14] Some Hamiltonian models of friction II, J. Math. Phys., Volume 53 (2012) no. 10, 103707, 35 pages | arXiv | DOI | MR | Zbl
[15] Ballistic motion of a tracer particle coupled to a Bose gas, Adv. Math., Volume 259 (2014), pp. 252-268 | arXiv | DOI | MR | Zbl
[16] Emission of Cherenkov radiation as a mechanism for Hamiltonian friction, Adv. Math., Volume 264 (2014), pp. 183-235 | arXiv | DOI | MR | Zbl
[17] Some Hamiltonian models of friction, J. Math. Phys., Volume 52 (2011) no. 8, 083508, 13 pages | arXiv | DOI | MR | Zbl
[18] Friction in a model of Hamiltonian dynamics, Commun. Math. Phys., Volume 315 (2012) no. 2, pp. 401-444 | arXiv | DOI | MR | Zbl
[19] On the infrared problem in a model of scalar electrons and massless, scalar bosons, Ann. Inst. Henri Poincaré, Nouv. Sér., Sect. A, Volume 19 (1973), pp. 1-103 | Numdam | MR | Zbl
[20] New theoretical approaches to Bose polarons, Quantum Matter at Ultralow Temperatures (Proceedings of the international school of physics “Enrico Fermi”), Volume 191 (2016), pp. 325-411 | arXiv | DOI
[21] Ground states in non-relativistic quantum electrodynamics, Invent. Math., Volume 145 (2001) no. 3, pp. 557-595 | arXiv | DOI | MR | Zbl
[22] Existence and uniqueness of physical ground states, J. Funct. Anal., Volume 10 (1972), pp. 52-109 | DOI | MR | Zbl
[23] Strong-coupling Bose polarons in a Bose-Einstein condensate, Phys. Rev. A, Volume 96 (2017) no. 1, 013607, 25 pages | arXiv | DOI
[24] On the existence of ground states for massless Pauli–Fierz Hamiltonians, Ann. Henri Poincaré, Volume 1 (2000) no. 3, pp. 443-459 | DOI | MR | Zbl
[25] Absence of ground states for a class of translation invariant models of non-relativistic QED, Commun. Math. Phys., Volume 279 (2008) no. 3, pp. 769-787 | arXiv | DOI | MR | Zbl
[26] On existence of ground states in the spin boson model, Commun. Math. Phys., Volume 388 (2021) no. 1, pp. 419-433 | arXiv | DOI | MR | Zbl
[27] Non-Fock ground states in the translation-invariant Nelson model revisited non-perturbatively, J. Funct. Anal., Volume 286 (2024) no. 7, 110319, 44 pages | DOI | MR | Zbl
[28] Existence of Ground States for Infrared-Critical Models of Quantum Field Theory, Ph. D. Thesis, Friedrich Schiller University Jena (2022) | DOI
[29] Ground states and associated path measures in the renormalized Nelson model, Rev. Math. Phys., Volume 34 (2022) no. 2, 2250002, 84 pages | DOI | MR | Zbl
[30] Ground states for translationally invariant Pauli-Fierz models at zero momentum, J. Funct. Anal., Volume 284 (2023) no. 1, 109725, 28 pages | arXiv | DOI | MR | Zbl
[31] A nonrelativistic quantum field theory with point interactions in three dimensions, Ann. Henri Poincaré, Volume 20 (2019) no. 11, pp. 3509-3541 | arXiv | DOI | MR | Zbl
[32] The renormalized Bogoliubov–Fröhlich Hamiltonian, J. Math. Phys., Volume 61 (2020) no. 10, 101902, 12 pages | arXiv | DOI | MR | Zbl
[33] The resolvent of the Nelson Hamiltonian improves positivity, Math. Phys. Anal. Geom., Volume 24 (2021) no. 1, 2, 17 pages | arXiv | DOI | MR | Zbl
[34] Hamiltonians for polaron models with subcritical ultraviolet singularities, Ann. Henri Poincaré, Volume 24 (2023) no. 8, pp. 2687-2728 | arXiv | DOI | MR | Zbl
[35] Lowest energy states in nonrelativistic QED: atoms and ions in motion, J. Funct. Anal., Volume 243 (2007) no. 2, pp. 353-393 | arXiv | DOI | MR | Zbl
[36] Dynamics of a tracer particle interacting with excitations of a Bose–Einstein condensate, Ann. Henri Poincaré, Volume 23 (2022) no. 8, pp. 2855-2876 | arXiv | DOI | MR | Zbl
[37] On Nelson-type Hamiltonians and abstract boundary conditions, Commun. Math. Phys., Volume 367 (2019) no. 2, pp. 629-663 | arXiv | DOI | MR | Zbl
[38] The excitation spectrum of a dilute Bose gas with an impurity (2024) (https://arxiv.org/abs/2401.14911)
[39] Scattering for a particle interacting with a Bose gas, Commun. Partial Differ. Equations, Volume 45 (2020) no. 10, pp. 1381-1413 | arXiv | DOI | MR | Zbl
[40] Continuity properties of the semi-group and its integral kernel in non-relativistic QED, Rev. Math. Phys., Volume 28 (2016) no. 5, 1650011, 90 pages | arXiv | DOI | MR | Zbl
[41] Microscopic derivation of the Fröhlich Hamiltonian for the Bose polaron in the mean-field limit, Ann. Henri Poincaré, Volume 21 (2020) no. 12, pp. 4003-4025 | arXiv | DOI | MR | Zbl
[42] The translation invariant massive Nelson model. I. The bottom of the spectrum, Ann. Henri Poincaré, Volume 6 (2005) no. 6, pp. 1091-1135 | DOI | MR | Zbl
[43] Interaction of nonrelativistic particles with a quantized scalar field, J. Math. Phys., Volume 5 (1964), pp. 1190-1197 | DOI | MR | Zbl
[44] One-particle (improper) states in Nelson’s massless model, Ann. Henri Poincaré, Volume 4 (2003) no. 3, pp. 439-486 | DOI | MR | Zbl
[45] Methods of modern mathematical physics. I. Functional analysis, Academic Press Inc., 1972, xvii+325 pages | MR
[46] On a direct description of pseudorelativistic Nelson Hamiltonians, J. Math. Phys., Volume 60 (2019) no. 10, 102303, 21 pages | arXiv | DOI | MR | Zbl
[47] The massless Nelson Hamiltonian and its domain, Mathematical challenges of zero-range physics – models, methods, rigorous results, open problems (Springer INdAM Series), Volume 42, Springer, 2021, pp. 57-80 | arXiv | DOI | MR
[48] The polaron at strong coupling, Rev. Math. Phys., Volume 33 (2021) no. 1, 2060012, 21 pages | arXiv | DOI | MR | Zbl
[49] The polaron at large total momentum, J. Phys. A. Math. Gen., Volume 21 (1988) no. 5, pp. 1199-1211 | DOI | MR
[50] Ground state of a quantum particle coupled to a scalar Bose field, Lett. Math. Phys., Volume 44 (1998) no. 1, pp. 9-16 | DOI | MR | Zbl
[51] Dynamical Quantum Cherenkov Transition of Fast Impurities in Quantum Liquids, Phys. Rev. Lett., Volume 127 (2021), 185302, 6 pages | arXiv | DOI
[52] Quantum Cherenkov transition of finite momentum Bose polarons (2021) (https://arxiv.org/abs/2109.12260)
[53] Intermediate spectral theory and quantum dynamics, Progress in Mathematical Physics, 54, Birkhäuser, 2009, xvi+410 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique