[Intersection de sous-groupes paraboliques dans les groupes de tresses euclidiens : une démonstration courte]
Nous donnons une démonstration courte du fait, déjà démontré par Thomas Haettel, que l’intersection arbitraire de sous-groupes paraboliques dans les groupes de tresses euclidiens est à nouveau un sous-groupe parabolique. À cette fin, nous utilisons le fait que le groupe d’Artin de type sphérique est isomorphe à .
We give a short proof for the fact, already proven by Thomas Haettel, that the arbitrary intersection of parabolic subgroups in Euclidean Braid groups is again a parabolic subgroup. To that end, we use that the spherical-type Artin group is isomorphic to .
Révisé le :
Accepté le :
Publié le :
Keywords: Group theory, Artin groups, Euclidean braid groups, parabolic subgroups, group isomorphism
Mot clés : Théorie des groupes, groupes d’Artin, groupes de tresses euclidiens, sous-groupes paraboliques, isomorphisme de groupes
María Cumplido 1 ; Federica Gavazzi 2 ; Luis Paris 2
@article{CRMATH_2024__362_G11_1445_0, author = {Mar{\'\i}a Cumplido and Federica Gavazzi and Luis Paris}, title = {Intersection of parabolic subgroups in {Euclidean} braid groups: a short proof}, journal = {Comptes Rendus. Math\'ematique}, pages = {1445--1448}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.656}, language = {en}, }
TY - JOUR AU - María Cumplido AU - Federica Gavazzi AU - Luis Paris TI - Intersection of parabolic subgroups in Euclidean braid groups: a short proof JO - Comptes Rendus. Mathématique PY - 2024 SP - 1445 EP - 1448 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.656 LA - en ID - CRMATH_2024__362_G11_1445_0 ER -
%0 Journal Article %A María Cumplido %A Federica Gavazzi %A Luis Paris %T Intersection of parabolic subgroups in Euclidean braid groups: a short proof %J Comptes Rendus. Mathématique %D 2024 %P 1445-1448 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.656 %G en %F CRMATH_2024__362_G11_1445_0
María Cumplido; Federica Gavazzi; Luis Paris. Intersection of parabolic subgroups in Euclidean braid groups: a short proof. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1445-1448. doi : 10.5802/crmath.656. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.656/
[1] The -problem for hyperplane complements associated to infinite reflection groups, J. Am. Math. Soc., Volume 8 (1995) no. 3, pp. 597-627 | DOI | MR | Zbl
[2] On parabolic subgroups of Artin–Tits groups of spherical type, Adv. Math., Volume 352 (2019), pp. 572-610 | DOI | MR | Zbl
[3] Parabolic subgroups of large-type Artin groups, Math. Proc. Camb. Philos. Soc., Volume 174 (2023) no. 2, pp. 393-414 | DOI | MR | Zbl
[4] Cohomology of Coxeter groups and Artin groups, Math. Res. Lett., Volume 7 (2000) no. 2-3, pp. 213-232 | DOI | MR | Zbl
[5] Lattices, injective metrics and the conjecture (2021) (to appear in Algebraic & Geometric Topology, https://arxiv.org/abs/2109.07891)
[6] A geometric and algebraic description of annular braid groups, Int. J. Algebra Comput., Volume 12 (2002) no. 1-2, pp. 85-97 | DOI | MR | Zbl
[7] conjecture for Artin groups, Ann. Fac. Sci. Toulouse, Math., Volume 23 (2014) no. 2, pp. 361-415 | DOI | MR | Zbl
[8] The Homotopy Type of Complex Hyperplane Complements, Ph. D. Thesis, Nijmegen (1983)
Cité par Sources :
Commentaires - Politique