Comptes Rendus
Research article - Representation theory
On a theorem of B. Keller on Yoneda algebras of simple modules
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453.

A theorem of Keller states that the Yoneda algebra of the simple modules over a finite-dimensional algebra is generated in cohomological degrees 0 and 1 as a minimal A -algebra. We provide a proof of an extension of Keller’s theorem to abelian length categories by reducing the problem to a particular class of Nakayama algebras, where the claim can be shown by direct computation.

Un théorème de Keller stipule que l’algèbre de Yoneda des modules simples sur une algèbre de dimension finie est générée en degrés cohomologiques 0 et 1 comme une A -algèbre minimale. Nous prouvons une extension du théorème de Keller aux catégories de longueur abélienne en réduisant le problème à une classe particulière d’algèbres de Nakayama, où l’affirmation peut être démontrée par un calcul direct.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.655
Classification: 18G70, 16G20, 16G70
Keywords: Yoneda algebras, simple modules, Nakayama algebras, $A_\infty $-algebras
Mots-clés : Algèbres de Yoneda, modules simples, algèbres de Nakayama, $A_\infty $-algèbres

Gustavo Jasso 1

1 Lund University, Centre for Mathematical Sciences, Box 118, 22100 Lund, Sweden
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2024__362_G11_1449_0,
     author = {Gustavo Jasso},
     title = {On a theorem of {B.~Keller} on {Yoneda} algebras of simple modules},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1449--1453},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.655},
     zbl = {07945487},
     language = {en},
}
TY  - JOUR
AU  - Gustavo Jasso
TI  - On a theorem of B. Keller on Yoneda algebras of simple modules
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1449
EP  - 1453
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.655
LA  - en
ID  - CRMATH_2024__362_G11_1449_0
ER  - 
%0 Journal Article
%A Gustavo Jasso
%T On a theorem of B. Keller on Yoneda algebras of simple modules
%J Comptes Rendus. Mathématique
%D 2024
%P 1449-1453
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.655
%G en
%F CRMATH_2024__362_G11_1449_0
Gustavo Jasso. On a theorem of B. Keller on Yoneda algebras of simple modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453. doi : 10.5802/crmath.655. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.655/

[1] Ibrahim Assem; Daniel Simson; Andrzej Skowroński Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006, x+458 pages | DOI | MR | Zbl

[2] Urtzi Buijs; José M. Moreno-Fernández; Aniceto Murillo A structures and Massey products, Mediterr. J. Math., Volume 17 (2020) no. 1, 31, 15 pages | DOI | MR | Zbl

[3] Xiaofa Chen On exact dg categories (2023) (https://arxiv.org/abs/2306.08231) | DOI

[4] E. Herscovich A simple note on the Yoneda (co)algebra of a monomial algebra, Ukraïn. Mat. Zh., Volume 73 (2021) no. 2, pp. 275-277 | DOI | MR | Zbl

[5] T. V. Kadeishvili The algebraic structure in the homology of an A()-algebra, Soobshch. Akad. Nauk Gruzin. SSR, Volume 108 (1982) no. 2, pp. 249-252 | MR | Zbl

[6] Bernhard Keller Introduction to A-infinity algebras and modules, Homology Homotopy Appl., Volume 3 (2001) no. 1, pp. 1-35 | DOI | MR | Zbl

[7] Bernhard Keller A-infinity algebras in representation theory, Representations of algebra. Vol. I (D. Happel; Y. B. Zhang, eds.), Beijing Norm. Univ. Press (2002), pp. 74-86 | MR | Zbl

[8] Bernhard Keller On differential graded categories, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 151-190 | MR | Zbl

[9] Bernhard Keller Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl

[10] Julian Külshammer; Vanessa Miemietz Uniqueness of exact Borel subalgebras and bocses (2021) (https://arxiv.org/abs/2109.03586)

[11] Henning Krause; Dieter Vossieck Length categories of infinite height, Geometric and topological aspects of the representation theory of finite groups (Springer Proceedings in Mathematics & Statistics), Volume 242, Springer, 2018, pp. 213-234 | DOI | MR | Zbl

[12] Kenji Lefèvre-Hasegawa Sur les A-infini catégories (2003) (https://arxiv.org/abs/math/0310337)

[13] Dag-Oskar Madsen Homologcal aspects in representation theory, Ph. D. Thesis, Norges teknisk-naturvitenskapelige universitet (NTNU) (2002)

[14] Dag-Oskar Madsen Ext-algebra generated by Hom and Ext 1 as A -algebra? (2015) https://mathoverflow.net/q/215918 (version: 2015-08-29)

[15] Martin Markl Transferring A (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo, Volume 79 (2006), pp. 139-151 | MR | Zbl

[16] Hiroyuki Minamoto Higher products on Yoneda Ext algebras, Proceedings of the 48th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi (2016), pp. 92-95 | MR | Zbl

[17] Pedro Tamaroff Minimal models for monomial algebras, Homology Homotopy Appl., Volume 23 (2021) no. 1, pp. 341-366 | DOI | MR | Zbl

[18] Jean-Louis Verdier Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, 1996, xii+253 pages (With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis) | Numdam | MR | Zbl

[19] Nobuo Yoneda On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 8 (1960), pp. 507-576 | MR | Zbl

Cited by Sources:

Comments - Policy