A theorem of Keller states that the Yoneda algebra of the simple modules over a finite-dimensional algebra is generated in cohomological degrees and as a minimal -algebra. We provide a proof of an extension of Keller’s theorem to abelian length categories by reducing the problem to a particular class of Nakayama algebras, where the claim can be shown by direct computation.
Un théorème de Keller stipule que l’algèbre de Yoneda des modules simples sur une algèbre de dimension finie est générée en degrés cohomologiques et comme une -algèbre minimale. Nous prouvons une extension du théorème de Keller aux catégories de longueur abélienne en réduisant le problème à une classe particulière d’algèbres de Nakayama, où l’affirmation peut être démontrée par un calcul direct.
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.655
Keywords: Yoneda algebras, simple modules, Nakayama algebras, $A_\infty $-algebras
Mots-clés : Algèbres de Yoneda, modules simples, algèbres de Nakayama, $A_\infty $-algèbres
Gustavo Jasso 1

@article{CRMATH_2024__362_G11_1449_0, author = {Gustavo Jasso}, title = {On a theorem of {B.~Keller} on {Yoneda} algebras of simple modules}, journal = {Comptes Rendus. Math\'ematique}, pages = {1449--1453}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.655}, zbl = {07945487}, language = {en}, }
Gustavo Jasso. On a theorem of B. Keller on Yoneda algebras of simple modules. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1449-1453. doi : 10.5802/crmath.655. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.655/
[1] Elements of the representation theory of associative algebras. Vol. 1. Techniques of representation theory, London Mathematical Society Student Texts, 65, Cambridge University Press, 2006, x+458 pages | DOI | MR | Zbl
[2] structures and Massey products, Mediterr. J. Math., Volume 17 (2020) no. 1, 31, 15 pages | DOI | MR | Zbl
[3] On exact dg categories (2023) (https://arxiv.org/abs/2306.08231) | DOI
[4] A simple note on the Yoneda (co)algebra of a monomial algebra, Ukraïn. Mat. Zh., Volume 73 (2021) no. 2, pp. 275-277 | DOI | MR | Zbl
[5] The algebraic structure in the homology of an -algebra, Soobshch. Akad. Nauk Gruzin. SSR, Volume 108 (1982) no. 2, pp. 249-252 | MR | Zbl
[6] Introduction to -infinity algebras and modules, Homology Homotopy Appl., Volume 3 (2001) no. 1, pp. 1-35 | DOI | MR | Zbl
[7] -infinity algebras in representation theory, Representations of algebra. Vol. I (D. Happel; Y. B. Zhang, eds.), Beijing Norm. Univ. Press (2002), pp. 74-86 | MR | Zbl
[8] On differential graded categories, International Congress of Mathematicians. Vol. II, European Mathematical Society, 2006, pp. 151-190 | MR | Zbl
[9] Deriving DG categories, Ann. Sci. Éc. Norm. Supér., Volume 27 (1994) no. 1, pp. 63-102 | DOI | Numdam | MR | Zbl
[10] Uniqueness of exact Borel subalgebras and bocses (2021) (https://arxiv.org/abs/2109.03586)
[11] Length categories of infinite height, Geometric and topological aspects of the representation theory of finite groups (Springer Proceedings in Mathematics & Statistics), Volume 242, Springer, 2018, pp. 213-234 | DOI | MR | Zbl
[12] Sur les -infini catégories (2003) (https://arxiv.org/abs/math/0310337)
[13] Homologcal aspects in representation theory, Ph. D. Thesis, Norges teknisk-naturvitenskapelige universitet (NTNU) (2002)
[14] -algebra generated by and as -algebra? (2015) https://mathoverflow.net/q/215918 (version: 2015-08-29)
[15] Transferring (strongly homotopy associative) structures, Rend. Circ. Mat. Palermo, Volume 79 (2006), pp. 139-151 | MR | Zbl
[16] Higher products on Yoneda algebras, Proceedings of the 48th Symposium on Ring Theory and Representation Theory, Symp. Ring Theory Represent. Theory Organ. Comm., Yamanashi (2016), pp. 92-95 | MR | Zbl
[17] Minimal models for monomial algebras, Homology Homotopy Appl., Volume 23 (2021) no. 1, pp. 341-366 | DOI | MR | Zbl
[18] Des catégories dérivées des catégories abéliennes, Astérisque, 239, Société Mathématique de France, 1996, xii+253 pages (With a preface by Luc Illusie, Edited and with a note by Georges Maltsiniotis) | Numdam | MR | Zbl
[19] On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 8 (1960), pp. 507-576 | MR | Zbl
Cited by Sources:
Comments - Policy