[Les structures conformément symplectiques et la condition de Lefschetz]
Cette courte note fournit un analogue symplectique au théorème de Vaisman en géométrie complexe. Plus précisement, pour toute variété compacte symplectique satisfaisant la condition de Lefschetz en degré 1, chaque structure localement conformément symplectique est en fait globalement conformément symplectique, quand celle-ci et la forme symplectique sont compatibles avec la même structure presque complexe.
This short note provides a symplectic analogue of Vaisman’s theorem in complex geometry. Namely, for any compact symplectic manifold satisfying the hard Lefschetz condition in degree 1, every locally conformally symplectic structure is in fact globally conformally symplectic, whenever there is a mutually compatible almost complex structure.
Révisé le :
Accepté le :
Publié le :
Keywords: Locally conformally symplectic structures, hard Lefschetz condition, almost complex structures
Mot clés : Structures localement conformément symplectiques, condition de Lefschetz, structures presque complexes
Mehdi Lejmi 1 ; Scott O. Wilson 2
@article{CRMATH_2024__362_G11_1491_0, author = {Mehdi Lejmi and Scott O. Wilson}, title = {Conformally symplectic structures and the {Lefschetz} condition}, journal = {Comptes Rendus. Math\'ematique}, pages = {1491--1495}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.660}, language = {en}, }
Mehdi Lejmi; Scott O. Wilson. Conformally symplectic structures and the Lefschetz condition. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1491-1495. doi : 10.5802/crmath.660. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.660/
[1] Structure of locally conformally symplectic Lie algebras and solvmanifolds, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (2020) no. 1, pp. 373-411 | DOI | MR | Zbl
[2] Locally conformally symplectic and Kähler geometry, EMS Surv. Math. Sci., Volume 5 (2018) no. 1-2, pp. 129-154 | DOI | MR | Zbl
[3] Kähler and symplectic structures on nilmanifolds, Topology, Volume 27 (1988) no. 4, pp. 513-518 | DOI | MR | Zbl
[4] Kähler structures on compact solvmanifolds, Proc. Am. Math. Soc., Volume 108 (1990) no. 4, pp. 971-980 | DOI | MR | Zbl
[5] Locally conformal symplectic nilmanifolds with no locally conformal Kähler metrics, Complex Manifolds, Volume 4 (2017) no. 1, pp. 172-178 | DOI | MR | Zbl
[6] On locally conformal symplectic manifolds of the first kind, Bull. Sci. Math., Volume 143 (2018), pp. 1-57 | DOI | MR | Zbl
[7] Topological and geometric aspects of almost Kähler manifolds via harmonic theory, Sel. Math., New Ser., Volume 26 (2020) no. 3, 35, 27 pages | DOI | MR | Zbl
[8] Some six-dimensional compact symplectic and complex solvmanifolds, Rend. Mat. Appl., Volume 12 (1992) no. 1, pp. 59-67 | MR | Zbl
[9] Locally conformal Kähler geometry, Progress in Mathematics, 155, Birkhäuser, 1998, xiv+327 pages | DOI | MR | Zbl
[10] The Kähler cone versus the symplectic cone, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér., Volume 42(90) (1999) no. 1, pp. 41-49 | MR | Zbl
[11] Making cobordisms symplectic, J. Am. Math. Soc., Volume 36 (2023) no. 1, pp. 1-29 | DOI | MR | Zbl
[12] A six-dimensional compact symplectic solvmanifold without Kähler structures, Osaka J. Math., Volume 33 (1996) no. 1, pp. 19-35 | MR | Zbl
[13] The space of symplectic structures on closed 4-manifolds, Third International Congress of Chinese Mathematicians. Part 1, 2 (AMS/IP Studies in Advanced Mathematics), Volume 42, American Mathematical Society, 2008, pp. 259-277 | MR | Zbl
[14] Betti numbers and compatible almost complex structures on the hard Lefschetz condition (2023) (https://arxiv.org/abs/2312.16948)
[15] On complex parallelisable manifolds and their small deformations, Proc. Japan Acad., Volume 48 (1972), pp. 447-449 | MR | Zbl
[16] Principles of Locally Conformally Kähler Geometry (2013) (https://arxiv.org/abs/2208.07188)
[17] -Harmonic forms on -dimensional almost-Hermitian manifolds (2021)
[18] Remarks on some compact symplectic solvmanifolds, Acta Math. Sin., Engl. Ser., Volume 39 (2023) no. 10, pp. 1874-1886 | DOI | MR | Zbl
[19] Some results on the hard Lefschetz condition, Int. J. Math., Volume 29 (2018) no. 13, 1850095, 30 pages | DOI | MR | Zbl
[20] On locally and globally conformal Kähler manifolds, Trans. Am. Math. Soc., Volume 262 (1980) no. 2, pp. 533-542 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique