Comptes Rendus
Article de recherche - Géométrie et Topologie
A note on homotopy and pseudoisotopy of diffeomorphisms of 4-manifolds
[Une note sur l’homotopie et la pseudoisotopie des diffeomorphismes des 4-variétés]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1515-1520.

Cette note a pour but de présenter des exemples de diffeomorphismes d’une 4-variété lisse X qui sont homotopes mais pas pseudo-isotopes à l’identité, et d’expliquer pourquoi de tels exemples n’existent pas quand X est orientable de groupe fondamental libre.

This note serves to record examples of diffeomorphisms of closed smooth 4-manifolds X that are homotopic but not pseudoisotopic to the identity, and to explain why there are no such examples when X is orientable and its fundamental group is a free group.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.663
Classification : 57R52, 57R67, 57K40
Keywords: 4-Manifolds, diffeomorphisms, pseudoisotopy, homotopy, surgery theory
Mots-clés : variété de dimension 4, difféomorphisme, homotopie, chirurgie

Manuel Krannich 1 ; Alexander Kupers 2

1 Department of Mathematics, Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
2 Department of Computer and Mathematical Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G11_1515_0,
     author = {Manuel Krannich and Alexander Kupers},
     title = {A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1515--1520},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.663},
     zbl = {07945493},
     language = {en},
}
TY  - JOUR
AU  - Manuel Krannich
AU  - Alexander Kupers
TI  - A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1515
EP  - 1520
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.663
LA  - en
ID  - CRMATH_2024__362_G11_1515_0
ER  - 
%0 Journal Article
%A Manuel Krannich
%A Alexander Kupers
%T A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds
%J Comptes Rendus. Mathématique
%D 2024
%P 1515-1520
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.663
%G en
%F CRMATH_2024__362_G11_1515_0
Manuel Krannich; Alexander Kupers. A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1515-1520. doi : 10.5802/crmath.663. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.663/

[1] A. Bak Odd dimension surgery groups of odd torsion groups vanish, Topology, Volume 14 (1975) no. 4, pp. 367-374 | DOI | MR | Zbl

[2] S. Cappell A splitting theorem for manifolds and surgery groups, Bull. Am. Math. Soc., Volume 77 (1971), pp. 281-286 | DOI | MR | Zbl

[3] F. T. Farrell; W. C. Hsiang Manifolds with π i =G×αT, Am. J. Math., Volume 95 (1973), pp. 813-848 | DOI | MR | Zbl

[4] D. Gabai 3-Spheres in the 4-Sphere and Pseudo-Isotopies of S 1 ×S 3 (2022) (https://arxiv.org/abs/2212.02004)

[5] I. Hambleton; L. R. Taylor A guide to the calculation of the surgery obstruction groups for finite groups, Surveys on surgery theory (Annals of Mathematics Studies), Volume 145, Princeton University Press, 2000, pp. 225-274 | MR | Zbl

[6] J. F. P. Hudson Concordance, isotopy, and diffeotopy, Ann. Math., Volume 91 (1970), pp. 425-448 | DOI | MR | Zbl

[7] M. A. Kervaire Smooth homology spheres and their fundamental groups, Trans. Am. Math. Soc., Volume 144 (1969), pp. 67-72 | DOI | MR | Zbl

[8] M. Kreck Isotopy classes of diffeomorphisms of (k-1)-connected almost-parallelizable 2k-manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978) (Lecture Notes in Mathematics), Volume 763, Springer, 1979, pp. 643-663 | DOI | MR | Zbl

[9] R. C. Kirby; L. C. Siebenmann Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, 88, Princeton University Press, 1977, vii+355 pages | DOI | MR | Zbl

[10] R. C. Kirby; L. R. Taylor A survey of 4-manifolds through the eyes of surgery, Surveys on surgery theory, Vol. 2 (Annals of Mathematics Studies), Volume 149, Princeton University Press, 2001, pp. 387-421 | MR | Zbl

[11] J. Milnor A procedure for killing homotopy groups of differentiable manifolds, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society (1961), pp. 39-55 | DOI | MR | Zbl

[12] F. Quinn The stable topology of 4-manifolds, Topology Appl., Volume 15 (1983) no. 1, pp. 71-77 | DOI | MR | Zbl

[13] F. Quinn Isotopy of 4-manifolds, J. Differ. Geom., Volume 24 (1986) no. 3, pp. 343-372 | DOI | MR | Zbl

[14] J. L. Shaneson Wall’s surgery obstruction groups for G×Z, Ann. Math., Volume 90 (1969), pp. 296-334 | DOI | MR | Zbl

[15] J. L. Shaneson Non-simply-connected surgery and some results in low dimensional topology, Comment. Math. Helv., Volume 45 (1970), pp. 333-352 | DOI | MR | Zbl

[16] R. Stong; Z. Wang Self-homeomorphisms of 4-manifolds with fundamental group , Topology Appl., Volume 106 (2000) no. 1, pp. 49-56 | DOI | MR | Zbl

[17] C. T. C. Wall Surgery on compact manifolds, Mathematical Surveys and Monographs, 69, American Mathematical Society, 1999, xvi+302 pages (Edited and with a foreword by A. A. Ranicki) | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique