This note serves to record examples of diffeomorphisms of closed smooth -manifolds that are homotopic but not pseudoisotopic to the identity, and to explain why there are no such examples when is orientable and its fundamental group is a free group.
Cette note a pour but de présenter des exemples de diffeomorphismes d’une 4-variété lisse X qui sont homotopes mais pas pseudo-isotopes à l’identité, et d’expliquer pourquoi de tels exemples n’existent pas quand X est orientable de groupe fondamental libre.
Revised:
Accepted:
Published online:
Keywords: 4-Manifolds, diffeomorphisms, pseudoisotopy, homotopy, surgery theory
Mots-clés : variété de dimension 4, difféomorphisme, homotopie, chirurgie
Manuel Krannich 1; Alexander Kupers 2
@article{CRMATH_2024__362_G11_1515_0, author = {Manuel Krannich and Alexander Kupers}, title = {A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {1515--1520}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.663}, language = {en}, }
TY - JOUR AU - Manuel Krannich AU - Alexander Kupers TI - A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds JO - Comptes Rendus. Mathématique PY - 2024 SP - 1515 EP - 1520 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.663 LA - en ID - CRMATH_2024__362_G11_1515_0 ER -
Manuel Krannich; Alexander Kupers. A note on homotopy and pseudoisotopy of diffeomorphisms of $4$-manifolds. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1515-1520. doi : 10.5802/crmath.663. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.663/
[1] Odd dimension surgery groups of odd torsion groups vanish, Topology, Volume 14 (1975) no. 4, pp. 367-374 | DOI | MR | Zbl
[2] A splitting theorem for manifolds and surgery groups, Bull. Am. Math. Soc., Volume 77 (1971), pp. 281-286 | DOI | MR | Zbl
[3] Manifolds with , Am. J. Math., Volume 95 (1973), pp. 813-848 | DOI | MR | Zbl
[4] 3-Spheres in the 4-Sphere and Pseudo-Isotopies of (2022) (https://arxiv.org/abs/2212.02004)
[5] A guide to the calculation of the surgery obstruction groups for finite groups, Surveys on surgery theory (Annals of Mathematics Studies), Volume 145, Princeton University Press, 2000, pp. 225-274 | MR | Zbl
[6] Concordance, isotopy, and diffeotopy, Ann. Math., Volume 91 (1970), pp. 425-448 | DOI | MR | Zbl
[7] Smooth homology spheres and their fundamental groups, Trans. Am. Math. Soc., Volume 144 (1969), pp. 67-72 | DOI | MR | Zbl
[8] Isotopy classes of diffeomorphisms of -connected almost-parallelizable -manifolds, Algebraic topology, Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978) (Lecture Notes in Mathematics), Volume 763, Springer, 1979, pp. 643-663 | DOI | MR | Zbl
[9] Foundational essays on topological manifolds, smoothings, and triangulations, Annals of Mathematics Studies, 88, Princeton University Press, 1977, vii+355 pages | DOI | MR | Zbl
[10] A survey of 4-manifolds through the eyes of surgery, Surveys on surgery theory, Vol. 2 (Annals of Mathematics Studies), Volume 149, Princeton University Press, 2001, pp. 387-421 | MR | Zbl
[11] A procedure for killing homotopy groups of differentiable manifolds, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society (1961), pp. 39-55 | DOI | MR | Zbl
[12] The stable topology of -manifolds, Topology Appl., Volume 15 (1983) no. 1, pp. 71-77 | DOI | MR | Zbl
[13] Isotopy of -manifolds, J. Differ. Geom., Volume 24 (1986) no. 3, pp. 343-372 | DOI | MR | Zbl
[14] Wall’s surgery obstruction groups for , Ann. Math., Volume 90 (1969), pp. 296-334 | DOI | MR | Zbl
[15] Non-simply-connected surgery and some results in low dimensional topology, Comment. Math. Helv., Volume 45 (1970), pp. 333-352 | DOI | MR | Zbl
[16] Self-homeomorphisms of 4-manifolds with fundamental group , Topology Appl., Volume 106 (2000) no. 1, pp. 49-56 | DOI | MR | Zbl
[17] Surgery on compact manifolds, Mathematical Surveys and Monographs, 69, American Mathematical Society, 1999, xvi+302 pages (Edited and with a foreword by A. A. Ranicki) | DOI | MR | Zbl
Cited by Sources:
Comments - Policy