[Polynômes de Grothendieck duales par percolation de dernier passage]
The ring of symmetric functions has a basis of dual Grothendieck polynomials that are inhomogeneous
L’anneau de fonctions symétriques a une base de polynômes de Grothendieck duales qui sont des déformations
Révisé le :
Accepté le :
Publié le :
Damir Yeliussizov 1

@article{CRMATH_2020__358_4_497_0, author = {Damir Yeliussizov}, title = {Dual {Grothendieck} polynomials via last-passage percolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {497--503}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.67}, language = {en}, }
Damir Yeliussizov. Dual Grothendieck polynomials via last-passage percolation. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 497-503. doi : 10.5802/crmath.67. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.67/
[1] GUEs and queues, Probab. Theory Relat. Fields, Volume 119 (2001) no. 2, pp. 256-274 | DOI | MR | Zbl
[2] A Fredholm determinant formula for Toeplitz determinants, Integral Equations Oper. Theory, Volume 37 (2000) no. 4, pp. 386-396 | DOI | MR | Zbl
[3] A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[4] Shape fluctuations and random matrices, Commun. Math. Phys., Volume 209 (2000) no. 2, pp. 437-476 | DOI | MR | Zbl
[5] Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math., Volume 153 (2001) no. 1, pp. 259-296 | DOI | MR | Zbl
[6] Random growth and random matrices, 3rd European congress of mathematics (ECM) (Progress in Mathematics), Volume 201, Birkhäuser, 2001, pp. 445-456 | DOI | MR | Zbl
[7] Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not., Volume 2007 (2007) no. 24, rnm125, 48 pages | MR | Zbl
[8] Combinatorial aspects of the
[9] Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl
[10] The surprising mathematics of longest increasing subsequences, Institute of Mathematical Statistics Textbooks, 4, Cambridge University Press, 2015 | MR | Zbl
[11] Lecture notes on the corner growth model (2009) (unpublished notes, available at https://www.researchgate.net/publication/228814673_Lecture_Notes_on_the_Corner_Growth_Model)
[12] On the distributions of the lengths of the longest monotone subsequences in random words, Probab. Theory Relat. Fields, Volume 119 (2001) no. 3, pp. 350-380 | DOI | MR | Zbl
[13] Duality and deformations of stable Grothendieck polynomials, J. Algebr. Comb., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
[14] Enumeration of plane partitions by descents (2019) (https://arxiv.org/abs/1911.03259)
[15] Random plane partitions and corner distributions (2019) (https://arxiv.org/abs/1910.13378)
[16] Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Comb. Theory, Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl
[17] Positive specializations of symmetric Grothendieck polynomials, Adv. Math., Volume 363 (2020), 107000, 35 pages | MR | Zbl
- Refined dual Grothendieck polynomials, integrability, and the Schur measure, Selecta Mathematica. New Series, Volume 31 (2025) no. 3, p. 70 (Id/No 43) | DOI:10.1007/s00029-025-01041-w | Zbl:8032686
- Refined canonical stable Grothendieck polynomials and their duals. I., Advances in Mathematics, Volume 446 (2024), p. 42 (Id/No 109670) | DOI:10.1016/j.aim.2024.109670 | Zbl:1536.05462
- Free fermions and canonical Grothendieck polynomials, Algebraic Combinatorics, Volume 7 (2024) no. 1, pp. 245-274 | DOI:10.5802/alco.332 | Zbl:1533.05278
- MacMahon's statistics on higher-dimensional partitions, Forum of Mathematics, Sigma, Volume 11 (2023), p. 23 (Id/No e63) | DOI:10.1017/fms.2023.61 | Zbl:1519.05018
- Free fermions and Schur expansions of multi-Schur functions, Journal of Combinatorial Theory. Series A, Volume 198 (2023), p. 23 (Id/No 105767) | DOI:10.1016/j.jcta.2023.105767 | Zbl:1517.05177
- Determinantal formulas for dual Grothendieck polynomials, Proceedings of the American Mathematical Society, Volume 150 (2022) no. 10, pp. 4113-4128 | DOI:10.1090/proc/16008 | Zbl:1504.05291
- Random plane partitions and corner distributions, Algebraic Combinatorics, Volume 4 (2021) no. 4, pp. 599-617 | DOI:10.5802/alco.171 | Zbl:1473.05310
- Enumeration of plane partitions by descents, Journal of Combinatorial Theory. Series A, Volume 178 (2021), p. 19 (Id/No 105367) | DOI:10.1016/j.jcta.2020.105367 | Zbl:1457.05114
- Refined dual Grothendieck polynomials, integrability, and the Schur measure, Séminaire Lotharingien de Combinatoire, Volume 85B (2021), p. 12 (Id/No 23) | Zbl:1505.05134
Cité par 9 documents. Sources : zbMATH
Commentaires - Politique