The ring of symmetric functions has a basis of dual Grothendieck polynomials that are inhomogeneous -theoretic deformations of Schur polynomials. We prove that dual Grothendieck polynomials determine column distributions for a directed last-passage percolation model.
L’anneau de fonctions symétriques a une base de polynômes de Grothendieck duales qui sont des déformations -théoriques non homogénes des polynômes de Schur. Nous prouvons que les polynômes de Grothendieck duales déterminent distributions des colonnes pour un modèle de percolation dirigée de dernier passage.
Revised:
Accepted:
Published online:
Damir Yeliussizov 1
@article{CRMATH_2020__358_4_497_0, author = {Damir Yeliussizov}, title = {Dual {Grothendieck} polynomials via last-passage percolation}, journal = {Comptes Rendus. Math\'ematique}, pages = {497--503}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {4}, year = {2020}, doi = {10.5802/crmath.67}, language = {en}, }
Damir Yeliussizov. Dual Grothendieck polynomials via last-passage percolation. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 497-503. doi : 10.5802/crmath.67. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.67/
[1] GUEs and queues, Probab. Theory Relat. Fields, Volume 119 (2001) no. 2, pp. 256-274 | DOI | MR | Zbl
[2] A Fredholm determinant formula for Toeplitz determinants, Integral Equations Oper. Theory, Volume 37 (2000) no. 4, pp. 386-396 | DOI | MR | Zbl
[3] A Littlewood–Richardson rule for the K-theory of Grassmannians, Acta Math., Volume 189 (2002) no. 1, pp. 37-78 | DOI | MR | Zbl
[4] Shape fluctuations and random matrices, Commun. Math. Phys., Volume 209 (2000) no. 2, pp. 437-476 | DOI | MR | Zbl
[5] Discrete orthogonal polynomial ensembles and the Plancherel measure, Ann. Math., Volume 153 (2001) no. 1, pp. 259-296 | DOI | MR | Zbl
[6] Random growth and random matrices, 3rd European congress of mathematics (ECM) (Progress in Mathematics), Volume 201, Birkhäuser, 2001, pp. 445-456 | DOI | MR | Zbl
[7] Combinatorial Hopf algebras and K-homology of Grassmannians, Int. Math. Res. Not., Volume 2007 (2007) no. 24, rnm125, 48 pages | MR | Zbl
[8] Combinatorial aspects of the -theory of Grassmannians, Ann. Comb., Volume 4 (2000) no. 1, pp. 67-82 | DOI | MR | Zbl
[9] Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 581-603 | DOI | MR | Zbl
[10] The surprising mathematics of longest increasing subsequences, Institute of Mathematical Statistics Textbooks, 4, Cambridge University Press, 2015 | MR | Zbl
[11] Lecture notes on the corner growth model (2009) (unpublished notes, available at https://www.researchgate.net/publication/228814673_Lecture_Notes_on_the_Corner_Growth_Model)
[12] On the distributions of the lengths of the longest monotone subsequences in random words, Probab. Theory Relat. Fields, Volume 119 (2001) no. 3, pp. 350-380 | DOI | MR | Zbl
[13] Duality and deformations of stable Grothendieck polynomials, J. Algebr. Comb., Volume 45 (2017) no. 1, pp. 295-344 | DOI | MR | Zbl
[14] Enumeration of plane partitions by descents (2019) (https://arxiv.org/abs/1911.03259)
[15] Random plane partitions and corner distributions (2019) (https://arxiv.org/abs/1910.13378)
[16] Symmetric Grothendieck polynomials, skew Cauchy identities, and dual filtered Young graphs, J. Comb. Theory, Ser. A, Volume 161 (2019), pp. 453-485 | DOI | MR | Zbl
[17] Positive specializations of symmetric Grothendieck polynomials, Adv. Math., Volume 363 (2020), 107000, 35 pages | MR | Zbl
Cited by Sources:
Comments - Policy