[Inégalités spectrales quantitatives pour les opérateurs de Shubin anisotropes et applications en contrôlabilité à zéro]
On démontre des inégalités spectrales quantitatives pour les opérateurs de Shubin (anisotropes) sur tout l’espace euclidien, reliant ainsi pour les fonctions des sous-espaces spectraux associés à des intervalles d’énergie finie leur norme sur l’espace entier à la norme sur un sous-ensemble approprié. Une caractéristique particulière de nos estimations est que la constante reliant ces normes est très explicite en les paramètres géométriques du sous-ensemble de l’espace entier correspondant, qui peut devenir clairsemé à l’infini et même avoir une mesure finie. On étend ainsi des résultats obtenus récemment par J. Martin et, dans le cas particulier de l’oscillateur harmonique, par A. Dicke, I. Veselić et le deuxième auteur. Nous appliquons nos résultats à la contrôlabilité à zéro des équations paraboliques associées, ainsi qu’à celles associées aux opérateurs (dégénérés) de Baouendi-Grushin agissant sur .
We prove quantitative spectral inequalities for the (anisotropic) Shubin operators on the whole Euclidean space, thus relating for functions from spectral subspaces associated to finite energy intervals their -norm on the whole space to the -norm on a suitable subset. A particular feature of our estimates is that the constant relating these -norms is very explicit in geometric parameters of the corresponding subset of the whole space, which may become sparse at infinity and may even have finite measure. This extends results obtained recently by J. Martin and, in the particular case of the harmonic oscillator, by A. Dicke, I. Veselić, and the second author. We apply our results towards null-controllability of the associated parabolic equations, as well as to the ones associated to the (degenerate) Baouendi-Grushin operators acting on .
Révisé le :
Accepté le :
Publié le :
Keywords: Spectral inequalities, null-controllability, Agmon estimates, anisotropic Shubin operators, Baouendi–Grushin operator
Mots-clés : Inégalités spectrales, contrôlabilité à zéro, estimées d’Agmon, opérateurs de Shubin anisotropes, opérateur de Baouendi–Grushin
Paul Alphonse 1 ; Albrecht Seelmann 2
@article{CRMATH_2024__362_G12_1635_0, author = {Paul Alphonse and Albrecht Seelmann}, title = {Quantitative spectral inequalities for the anisotropic {Shubin} operators and applications to null-controllability}, journal = {Comptes Rendus. Math\'ematique}, pages = {1635--1659}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.670}, language = {en}, }
TY - JOUR AU - Paul Alphonse AU - Albrecht Seelmann TI - Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability JO - Comptes Rendus. Mathématique PY - 2024 SP - 1635 EP - 1659 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.670 LA - en ID - CRMATH_2024__362_G12_1635_0 ER -
%0 Journal Article %A Paul Alphonse %A Albrecht Seelmann %T Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability %J Comptes Rendus. Mathématique %D 2024 %P 1635-1659 %V 362 %I Académie des sciences, Paris %R 10.5802/crmath.670 %G en %F CRMATH_2024__362_G12_1635_0
Paul Alphonse; Albrecht Seelmann. Quantitative spectral inequalities for the anisotropic Shubin operators and applications to null-controllability. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1635-1659. doi : 10.5802/crmath.670. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.670/
[1] Smoothing properties of fractional Ornstein-Uhlenbeck semigroups and null-controllability, Bull. Sci. Math., Volume 165 (2020), 102914, 52 pages | DOI | MR | Zbl
[2] Analysis of the null controllability of degenerate parabolic systems of Grushin type via the moments method, J. Evol. Equ., Volume 21 (2021) no. 4, pp. 4799-4843 | DOI | MR | Zbl
[3] Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates, Ann. Inst. Fourier, Volume 74 (2024) no. 4, pp. 1671-1720 | DOI | MR | Zbl
[4] Stabilization and approximate null-controllability for a large class of diffusive equations from thick control supports, ESAIM, Control Optim. Calc. Var., Volume 28 (2022), 16, 30 pages | DOI | MR | Zbl
[5] Unique continuation estimates for Baouendi–Grushin equations on cylinders (2024) (https://arxiv.org/abs/2401.17782)
[6] Global hypoellipticity and spectral theory, Mathematical Research, 92, Akademie Verlag, 1996, 187 pages | MR | Zbl
[7] Spectral asymptotic in the large coupling limit, Asymptotic Anal., Volume 29 (2002) no. 2, pp. 91-113 | MR | Zbl
[8] Null controllability of Grushin-type operators in dimension two, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 67-101 | DOI | MR | Zbl
[9] Minimal time issues for the observability of Grushin-type equations, Ann. Inst. Fourier, Volume 70 (2020) no. 1, pp. 247-312 | DOI | Numdam | MR | Zbl
[10] Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations, Stud. Math., Volume 260 (2021) no. 1, pp. 1-43 | DOI | MR | Zbl
[11] 2D Grushin-type equations: minimal time and null controllable data, J. Differ. Equations, Volume 259 (2015) no. 11, pp. 5813-5845 | DOI | MR | Zbl
[12] Time optimal observability for Grushin Schrödinger equation, Anal. PDE, Volume 15 (2022) no. 6, pp. 1487-1530 | DOI | MR | Zbl
[13] On a class of anharmonic oscillators, J. Math. Pures Appl., Volume 153 (2021), pp. 1-29 | DOI | MR | Zbl
[14] Nodal sets of eigenfunctions on Riemannian manifolds, Invent. Math., Volume 93 (1988) no. 1, pp. 161-183 | DOI | MR | Zbl
[15] Spectral Inequalities for Schrödinger Operators and Parabolic Observability, Dissertation, Technische Universität Dortmund (2022)
[16] Rate of convergence for large coupling limits by Brownian motion, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 59 (1993) no. 3, pp. 327-355 | Numdam | MR | Zbl
[17] Control of the Grushin equation: non-rectangular control region and minimal time, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 3, 18 pages | DOI | MR | Zbl
[18] Null-controllability properties of the generalized two-dimensional Baouendi–Grushin equation with non-rectangular control sets, Ann. Henri Lebesgue, Volume 6 (2023), pp. 1479-1522 | DOI | MR | Zbl
[19] Resolvent conditions for the control of parabolic equations, J. Funct. Anal., Volume 263 (2012) no. 11, pp. 3641-3673 | DOI | MR | Zbl
[20] Uncertainty principles with error term in Gelfand–Shilov spaces, Arch. Math., Volume 119 (2022) no. 4, pp. 413-425 | DOI | MR | Zbl
[21] Uncertainty principle for Hermite functions and null-controllability with sensor sets of decaying density, J. Fourier Anal. Appl., Volume 29 (2023) no. 1, 11, 19 pages | DOI | MR | Zbl
[22] Spectral inequality with sensor sets of decaying density for Schrödinger operators with power growth potentials, SN Partial Differ. Equ. Appl., Volume 5 (2024) no. 2, 7, 18 pages | DOI | MR | Zbl
[23] An abstract Logvinenko-Sereda type theorem for spectral subspaces, J. Math. Anal. Appl., Volume 500 (2021) no. 1, 125149, 32 pages | DOI | MR | Zbl
[24] The uncertainty principle in harmonic analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 28, Springer, 1994, xii+543 pages | DOI | MR | Zbl
[25] Introduction to spectral theory. With applications to Schrödinger operators, Applied Mathematical Sciences, 113, Springer, 1996, x+337 pages | DOI | MR | Zbl
[26] Non-null-controllability of the Grushin operator in 2D, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 12, pp. 1215-1235 | DOI | Numdam | MR | Zbl
[27] Contrôlabilité de quelques équations aux dérivées partielles paraboliques peu diffusives, Ph. D. Thesis, Université Côte d’Azur (2019)
[28] Some estimates of Fourier transforms, Ph. D. Thesis, California Institute of Technology (2000)
[29] Some results related to the Logvinenko–Sereda theorem, Proc. Am. Math. Soc., Volume 129 (2001) no. 10, pp. 3037-3047 | DOI | MR | Zbl
[30] Observability of the heat equation, geometric constants in control theory, and a conjecture of Luc Miller, Anal. PDE, Volume 14 (2021) no. 2, pp. 355-423 | DOI | MR | Zbl
[31] Lecture notes on quantitative unique continuation for solutions of second order elliptic equations, Harmonic analysis and applications (IAS/Park City Mathematics Series), Volume 27, American Mathematical Society, 2020, pp. 1-33 | DOI | MR | Zbl
[32] On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations, ESAIM, Control Optim. Calc. Var., Volume 18 (2012) no. 3, pp. 712-747 | DOI | Numdam | MR | Zbl
[33] Observability of Baouendi-Grushin-type equations through resolvent estimates, J. Inst. Math. Jussieu, Volume 22 (2023) no. 2, pp. 541-579 | DOI | MR | Zbl
[34] Conditions géométriques pour la contrôlabilité d’équations aux dérivées partielles linéaires, Ph. D. Thesis, Université de Rennes 1 (2022)
[35] Spectral inequalities for anisotropic Shubin operators (2022) (https://arxiv.org/abs/2205.11868)
[36] Uncertainty principles in Gelfand–Shilov spaces and null-controllability, J. Funct. Anal., Volume 283 (2022) no. 8, 109619, 48 pages | DOI | MR | Zbl
[37] Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, 1995, xii+343 pages | DOI | MR | Zbl
[38] Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones (2008) (https://hal.archives-ouvertes.fr/hal-00411840)
[39] Geometric conditions for the exact controllability of fractional free and harmonic Schrödinger equations, J. Evol. Equ., Volume 21 (2021) no. 1, pp. 1059-1087 | DOI | MR | Zbl
[40] Spectral inequalities for combinations of Hermite functions and null-controllability for evolution equations enjoying Gelfand–Shilov smoothing effects, J. Inst. Math. Jussieu, Volume 22 (2023) no. 6, pp. 2533-2582 | DOI | MR | Zbl
[41] Sharp estimates and homogenization of the control cost of the heat equation on large domains, ESAIM, Control Optim. Calc. Var., Volume 26 (2020), 54, 26 pages | DOI | MR | Zbl
[42] Unbounded self-adjoint operators on Hilbert space, Graduate Texts in Mathematics, 265, Springer, 2012, xx+432 pages | DOI | MR | Zbl
[43] A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Funct. Anal., Volume 28 (1978) no. 3, pp. 377-385 | DOI | MR | Zbl
[44] Lower bounds for Dirichlet Laplacians and uncertainty principles, J. Eur. Math. Soc., Volume 23 (2021) no. 7, pp. 2337-2360 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique