[Sur la pseudo-algèbre de groupe des groupes finis]
Soit un groupe fini. La pseudo-algèbre de groupe de G est définie comme le multi-ensemble , où est le nombre de caractères irréductibles de de codegré . Nous montrons qu’il existe deux p-groupes finis avec des ordres distincts qui ont la même pseudo-algèbre de groupe, ce qui fournit une réponse à la question 3.2 de [7]. De plus, nous discutons également sous quelles hypothèses deux p-groupes ayant la même pseudo-algèbre de groupe sont forcément isomorphes.
Let be a finite group. The group pseudo-algebra of is defined as the multi-set , where is the number of irreducible characters of with codegree . We show that there exist two finite -groups with distinct orders that have the same group pseudo-algebra, providing an answer to Question 3.2 in [7]. In addition, we also discuss under what hypothesis two -groups with the same group pseudo-algebra will be isomorphic.
Révisé le :
Accepté le :
Publié le :
Keywords: Finite $p$-groups, Characters, Group pseudo-algebra
Mots-clés : p-groupes finis, Caractères, Pseudo-algèbre de groupe
Mark L. Lewis 1 ; Quanfu Yan 1, 2
@article{CRMATH_2024__362_G12_1661_0, author = {Mark L. Lewis and Quanfu Yan}, title = {On the group pseudo-algebra of finite groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {1661--1665}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.671}, language = {en}, }
Mark L. Lewis; Quanfu Yan. On the group pseudo-algebra of finite groups. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1661-1665. doi : 10.5802/crmath.671. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.671/
[1] Groups of prime power order. Vol. 1, De Gruyter Expositions in Mathematics, 46, Walter de Gruyter, 2008, xx+512 pages | DOI | MR | Zbl
[2] On prime-power groups in which the derived group has two generators, Proc. Camb. Philos. Soc., Volume 53 (1957), pp. 19-27 | DOI | MR | Zbl
[3] On prime-power groups with two generators, Proc. Camb. Philos. Soc., Volume 54 (1958), pp. 327-337 | DOI | MR | Zbl
[4] Codegrees and nilpotence class of -groups, J. Group Theory, Volume 19 (2016) no. 4, pp. 561-567 | DOI | MR | Zbl
[5] Groups of prime power order with many conjugacy classes, J. Algebra, Volume 202 (1998) no. 1, pp. 129-141 | DOI | MR | Zbl
[6] Element orders and character codegrees, Arch. Math., Volume 97 (2011) no. 6, pp. 499-501 | DOI | MR | Zbl
[7] Multiplicities of character codegrees of finite groups, Bull. Lond. Math. Soc., Volume 55 (2023) no. 1, pp. 234-241 | DOI | MR | Zbl
[8] Element orders and character codegrees, Bull. Lond. Math. Soc., Volume 53 (2021) no. 3, pp. 820-824 | DOI | MR | Zbl
[9] Co-degrees of irreducible characters in finite groups, J. Algebra, Volume 312 (2007) no. 2, pp. 946-955 | DOI | MR | Zbl
[10] The analog of Huppert’s conjecture on character codegrees, J. Algebra, Volume 478 (2017), pp. 215-219 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique