[Orbite géodésique et variétés de spray faiblement symétriques]
In this paper, we introduce the geodesic orbit and weakly symmetric properties in homogeneous spray geometry. When a homogeneous spray manifold is endowed with a reductive decomposition, we use the spray vector field to describe these properties, and prove that a weakly symmetric spray manifold must be geodesic orbit, which generalizes its analog in homogeneous Riemannian and Finsler geometries.
Dans cet article, nous introduisons l’orbite géodésique et les propriétés faiblement symétriques dans la géométrie homogène de spray. Lorsqu’un collecteur homogène de spray est doté d’une décomposition réductrice, nous utilisons le champ de vecteurs de spray pour décrire ces propriétés, et prouvons qu’un collecteur de spray faiblement symétrique doit avoir une orbite géodésique, ce qui généralise son analogue dans les géométries homogènes de Riemann et de Finsler.
Révisé le :
Accepté le :
Publié le :
Keywords: Homogeneous geodesic, homogeneous spray manifold, weakly symmetric space, geodesic orbit space, spray structure, spray vector field
Mots-clés : Géodésique homogène, espace de pulvérisation homogène, espace faiblement symétrique, espace d’orbite géodésique, structure de pulvérisation, champ de vecteurs de pulvérisation
Xiyun Xu 1 ; Ming Xu 1

@article{CRMATH_2025__363_G4_337_0, author = {Xiyun Xu and Ming Xu}, title = {Geodesic orbit and weakly symmetric spray manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {337--344}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.673}, language = {en}, }
Xiyun Xu; Ming Xu. Geodesic orbit and weakly symmetric spray manifolds. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 337-344. doi : 10.5802/crmath.673. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.673/
[1] On homogeneous geodesics and weakly symmetric spaces, Ann. Global Anal. Geom., Volume 55 (2019) no. 3, pp. 575-589 | DOI | MR | Zbl
[2] Riemannian manifolds and homogeneous geodesics, Springer Monographs in Mathematics, Springer, 2020, xxii+482 pages | DOI | MR
[3] Geodesics in weakly symmetric spaces, Ann. Global Anal. Geom., Volume 15 (1997) no. 2, pp. 153-156 | DOI | MR | Zbl
[4] Homogeneous Finsler spaces, Springer Monographs in Mathematics, Springer, 2012, xiv+240 pages | DOI | MR
[5] Weakly symmetric Finsler spaces, Commun. Contemp. Math., Volume 12 (2010) no. 2, pp. 309-323 | DOI | MR | Zbl
[6] Homogeneous Riemannian manifolds whose geodesics are orbits, Topics in geometry (Progress in Nonlinear Differential Equations and their Applications), Birkhäuser, 1996 no. 20, pp. 155-174 | DOI | MR | Zbl
[7] Connections, curvature, and cohomology. Vol. II: Lie groups, principal bundles, and characteristic classes, Pure and Applied Mathematics, 47, Academic Press Inc., 1973, xxi+541 pages | MR
[8] On the fundamental equations of homogeneous Finsler spaces, Differ. Geom. Appl., Volume 40 (2015), pp. 187-208 | DOI | MR | Zbl
[9] Inverse problem of left invariant sprays on Lie groups, Int. J. Math., Volume 32 (2021) no. 10, 2150076, 13 pages | DOI | MR | Zbl
[10] Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital., VII. Ser., B, Volume 5 (1991) no. 1, pp. 189-246 | MR
[11] Sprays of isotropic curvature, Int. J. Math., Volume 29 (2018) no. 1, 1850003, 12 pages | DOI | MR | Zbl
[12] On Sakaguchi-type result in projective spray geometry, Ann. Mat. Pura Appl. (4), Volume 200 (2021) no. 5, pp. 2181-2189 | DOI | MR | Zbl
[13] On the structure of geodesic orbit Riemannian spaces, Ann. Global Anal. Geom., Volume 52 (2017) no. 3, pp. 289-311 | DOI | MR | Zbl
[14] Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., New Ser., Volume 20 (1956), pp. 47-87 | MR | Zbl
[15] Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, 2001, xiii+258 pages | DOI | MR
[16] Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, 102, Springer, 1984, xiii+430 pages | DOI | MR
[17] Harmonic analysis on commutative spaces, Mathematical Surveys and Monographs, 142, American Mathematical Society, 2007, xvi+387 pages | DOI | MR
[18] Weakly symmetric pseudo-Riemannian nilmanifolds, J. Differ. Geom., Volume 121 (2022) no. 3, pp. 541-572 | DOI | MR | Zbl
[19] Geodesic orbit spheres and constant curvature in Finsler geometry, Differ. Geom. Appl., Volume 61 (2018), pp. 197-206 | DOI | MR | Zbl
[20] Left invariant spray structure on a Lie group, J. Lie Theory, Volume 32 (2022) no. 1, pp. 121-138 | MR | Zbl
[21] Submersion and homogeneous spray geometry, J. Geom. Anal., Volume 32 (2022) no. 6, 172, 43 pages | DOI | MR | Zbl
[22] Parallel translations for a left invariant spray, Bull. Iran. Math. Soc., Volume 49 (2023) no. 2, 16, 17 pages | DOI | MR | Zbl
[23] Finsler spaces whose geodesics are orbits, Differ. Geom. Appl., Volume 36 (2014), pp. 1-23 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique