Comptes Rendus
Article de recherche - Géométrie et Topologie
Geodesic orbit and weakly symmetric spray manifolds
[Orbite géodésique et variétés de spray faiblement symétriques]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 337-344.

In this paper, we introduce the geodesic orbit and weakly symmetric properties in homogeneous spray geometry. When a homogeneous spray manifold is endowed with a reductive decomposition, we use the spray vector field to describe these properties, and prove that a weakly symmetric spray manifold must be geodesic orbit, which generalizes its analog in homogeneous Riemannian and Finsler geometries.

Dans cet article, nous introduisons l’orbite géodésique et les propriétés faiblement symétriques dans la géométrie homogène de spray. Lorsqu’un collecteur homogène de spray est doté d’une décomposition réductrice, nous utilisons le champ de vecteurs de spray pour décrire ces propriétés, et prouvons qu’un collecteur de spray faiblement symétrique doit avoir une orbite géodésique, ce qui généralise son analogue dans les géométries homogènes de Riemann et de Finsler.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.673
Classification : 22E46, 53C30
Keywords: Homogeneous geodesic, homogeneous spray manifold, weakly symmetric space, geodesic orbit space, spray structure, spray vector field
Mots-clés : Géodésique homogène, espace de pulvérisation homogène, espace faiblement symétrique, espace d’orbite géodésique, structure de pulvérisation, champ de vecteurs de pulvérisation

Xiyun Xu 1 ; Ming Xu 1

1 School of Mathematical Sciences, Capital Normal University, Beijing 100048, P.R. China
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G4_337_0,
     author = {Xiyun Xu and Ming Xu},
     title = {Geodesic orbit and weakly symmetric spray manifolds},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {337--344},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.673},
     language = {en},
}
TY  - JOUR
AU  - Xiyun Xu
AU  - Ming Xu
TI  - Geodesic orbit and weakly symmetric spray manifolds
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 337
EP  - 344
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.673
LA  - en
ID  - CRMATH_2025__363_G4_337_0
ER  - 
%0 Journal Article
%A Xiyun Xu
%A Ming Xu
%T Geodesic orbit and weakly symmetric spray manifolds
%J Comptes Rendus. Mathématique
%D 2025
%P 337-344
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.673
%G en
%F CRMATH_2025__363_G4_337_0
Xiyun Xu; Ming Xu. Geodesic orbit and weakly symmetric spray manifolds. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 337-344. doi : 10.5802/crmath.673. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.673/

[1] Valeriĭ Nikolaevich Berestovskiĭ; Yuriĭ Gennadievich Nikonorov On homogeneous geodesics and weakly symmetric spaces, Ann. Global Anal. Geom., Volume 55 (2019) no. 3, pp. 575-589 | DOI | MR | Zbl

[2] Valeriĭ Nikolaevich Berestovskiĭ; Yuriĭ Gennadievich Nikonorov Riemannian manifolds and homogeneous geodesics, Springer Monographs in Mathematics, Springer, 2020, xxii+482 pages | DOI | MR

[3] Jürgen Berndt; Oldřich Kowalski; Lieven Vanhecke Geodesics in weakly symmetric spaces, Ann. Global Anal. Geom., Volume 15 (1997) no. 2, pp. 153-156 | DOI | MR | Zbl

[4] Shaoqiang Deng Homogeneous Finsler spaces, Springer Monographs in Mathematics, Springer, 2012, xiv+240 pages | DOI | MR

[5] Shaoqiang Deng; Zixin Hou Weakly symmetric Finsler spaces, Commun. Contemp. Math., Volume 12 (2010) no. 2, pp. 309-323 | DOI | MR | Zbl

[6] Carolyn S. Gordon Homogeneous Riemannian manifolds whose geodesics are orbits, Topics in geometry (Progress in Nonlinear Differential Equations and their Applications), Birkhäuser, 1996 no. 20, pp. 155-174 | DOI | MR | Zbl

[7] Werner Greub; Stephen Halperin; Ray Vanstone Connections, curvature, and cohomology. Vol. II: Lie groups, principal bundles, and characteristic classes, Pure and Applied Mathematics, 47, Academic Press Inc., 1973, xxi+541 pages | MR

[8] Libing Huang On the fundamental equations of homogeneous Finsler spaces, Differ. Geom. Appl., Volume 40 (2015), pp. 187-208 | DOI | MR | Zbl

[9] Libing Huang; Xiaohuan Mo Inverse problem of left invariant sprays on Lie groups, Int. J. Math., Volume 32 (2021) no. 10, 2150076, 13 pages | DOI | MR | Zbl

[10] Oldřich Kowalski; Lieven Vanhecke Riemannian manifolds with homogeneous geodesics, Boll. Unione Mat. Ital., VII. Ser., B, Volume 5 (1991) no. 1, pp. 189-246 | MR

[11] Benling Li; Zhongmin Shen Sprays of isotropic curvature, Int. J. Math., Volume 29 (2018) no. 1, 1850003, 12 pages | DOI | MR | Zbl

[12] Ying Li; Xiaohuan Mo On Sakaguchi-type result in projective spray geometry, Ann. Mat. Pura Appl. (4), Volume 200 (2021) no. 5, pp. 2181-2189 | DOI | MR | Zbl

[13] Yuriĭ Gennadievich Nikonorov On the structure of geodesic orbit Riemannian spaces, Ann. Global Anal. Geom., Volume 52 (2017) no. 3, pp. 289-311 | DOI | MR | Zbl

[14] Atle Selberg Harmonic analysis and discontinuous groups in weakly symmetric Riemannian spaces with applications to Dirichlet series, J. Indian Math. Soc., New Ser., Volume 20 (1956), pp. 47-87 | MR | Zbl

[15] Zhongmin Shen Differential geometry of spray and Finsler spaces, Kluwer Academic Publishers, 2001, xiii+258 pages | DOI | MR

[16] Veeravalli S. Varadarajan Lie groups, Lie algebras, and their representations, Graduate Texts in Mathematics, 102, Springer, 1984, xiii+430 pages | DOI | MR

[17] Joseph A. Wolf Harmonic analysis on commutative spaces, Mathematical Surveys and Monographs, 142, American Mathematical Society, 2007, xvi+387 pages | DOI | MR

[18] Joseph A. Wolf; Zhiqi Chen Weakly symmetric pseudo-Riemannian nilmanifolds, J. Differ. Geom., Volume 121 (2022) no. 3, pp. 541-572 | DOI | MR | Zbl

[19] Ming Xu Geodesic orbit spheres and constant curvature in Finsler geometry, Differ. Geom. Appl., Volume 61 (2018), pp. 197-206 | DOI | MR | Zbl

[20] Ming Xu Left invariant spray structure on a Lie group, J. Lie Theory, Volume 32 (2022) no. 1, pp. 121-138 | MR | Zbl

[21] Ming Xu Submersion and homogeneous spray geometry, J. Geom. Anal., Volume 32 (2022) no. 6, 172, 43 pages | DOI | MR | Zbl

[22] Ming Xu Parallel translations for a left invariant spray, Bull. Iran. Math. Soc., Volume 49 (2023) no. 2, 16, 17 pages | DOI | MR | Zbl

[23] Zaili Yan; Shaoqiang Deng Finsler spaces whose geodesics are orbits, Differ. Geom. Appl., Volume 36 (2014), pp. 1-23 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique