[Sur les métriques racines m-ièmes ayant des propriétés de courbure spéciales]
Dans cette Note, nous montrons que toutes les métriques de Finsler racines m-ièmes ayant une courbure de Landsberg isotrope se réduisent à une métrique de Landsberg. Nous montrons ensuite que toutes les métriques de Finsler racines m-ièmes ayant une H-courbure presque nulle ont en fait une H-courbure nulle.
In this Note, we prove that every m-th root Finsler metric with isotropic Landsberg curvature reduces to a Landsberg metric. Then, we show that every m-th root metric with almost vanishing H-curvature has vanishing H-curvature.
Accepté le :
Publié le :
Akbar Tayebi 1 ; Behzad Najafi 2
@article{CRMATH_2011__349_11-12_691_0, author = {Akbar Tayebi and Behzad Najafi}, title = {On \protect\emph{m}-th root metrics with special curvature properties}, journal = {Comptes Rendus. Math\'ematique}, pages = {691--693}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.06.004}, language = {en}, }
Akbar Tayebi; Behzad Najafi. On m-th root metrics with special curvature properties. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 691-693. doi : 10.1016/j.crma.2011.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.004/
[1] Sur les espaces de Finsler á courbures sectionnelles constantes, Bull. Acad. Roy. Belg. Cl. Sci. (5), Volume LXXXIV (1988), pp. 281-322
[2] Numerical multilinear algebra of symmetric m-root structures. Spectral properties and applications, Symmetry Festival 2009, Budapest, Hungary (Symmetry: Culture and Science), Volume 21 (2010) no. 1–3, pp. 119-131
[3] CMC and minimal surfaces in Berwald–Moor spaces, Hypercomplex Numbers in Geometry and Physics, Volume 3 (2006) no. 2(6), pp. 113-122
[4] Applications of resultants in the spectral m-root framework, Applied Sciences, Volume 12 (2010), pp. 20-29
[5] Einstein equations for
[6] Berwald–Moor-type
[7] Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata, Volume 131 (2008), pp. 87-97
[8] On m-th root Finsler metrics, J. Geom. Phys., Volume 61 (2011) no. 8, pp. 1479-1484
[9] On Einstein m-th root metrics, Differential Geometry and its Applications, Volume 28 (2010), pp. 290-294
- On some non-Riemannian curvature of Minkowskian product Finsler metrics, Journal of Mathematical Analysis and Applications, Volume 534 (2024) no. 2, p. 128070 | DOI:10.1016/j.jmaa.2023.128070
- On Einstein-reversible mth root Finsler metrics, International Journal of Geometric Methods in Modern Physics, Volume 20 (2023) no. 06 | DOI:10.1142/s0219887823500998
- Multimetric Finsler geometry, International Journal of Modern Physics A, Volume 38 (2023) no. 03 | DOI:10.1142/s0217751x23500185
- On Conformally Flat Cubic (α,β )-Metrics, Vietnam Journal of Mathematics, Volume 49 (2021) no. 4, p. 987 | DOI:10.1007/s10013-020-00389-0
- On 4-th root metrics of isotropic scalar curvature, Mathematica Slovaca, Volume 70 (2020) no. 1, p. 161 | DOI:10.1515/ms-2017-0341
- On conformally flat fourth root (α,β)-metrics, Differential Geometry and its Applications, Volume 62 (2019), p. 253 | DOI:10.1016/j.difgeo.2018.12.002
- On the theory of
-th root Finsler metrics, Tbilisi Mathematical Journal, Volume 12 (2019) no. 1 | DOI:10.32513/tbilisi/1553565628 - Characterization of Weakly Berwald Fourth-Root Metrics, Ukrainian Mathematical Journal, Volume 71 (2019) no. 7, p. 1115 | DOI:10.1007/s11253-019-01702-y
- On generalized 4-th root metrics of isotropic scalar curvature, Mathematica Slovaca, Volume 68 (2018) no. 4, p. 907 | DOI:10.1515/ms-2017-0154
- Four families of projectively flat Finsler metrics with
K = 1 and their non-Riemannian curvature properties, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, Volume 112 (2018) no. 4, p. 1463 | DOI:10.1007/s13398-017-0443-2 - Some properties of m-th root Finsler metrics, Journal of Contemporary Mathematical Analysis, Volume 49 (2014) no. 4, p. 184 | DOI:10.3103/s1068362314040049
- Some curvature properties of Cartan spaces with mth root metrics, Lithuanian Mathematical Journal, Volume 54 (2014) no. 1, p. 106 | DOI:10.1007/s10986-014-9230-3
- On Kropina Change for mth Root Finsler Metrics, Ukrainian Mathematical Journal, Volume 66 (2014) no. 1, p. 160 | DOI:10.1007/s11253-014-0919-6
- WITHDRAWN: About R-quadratic Finsler metrics, Comptes Rendus Mathematique (2012) | DOI:10.1016/j.crma.2012.04.018
- On a subclass of the class of generalized Douglas-Weyl metrics, Journal of Contemporary Mathematical Analysis, Volume 47 (2012) no. 2, p. 70 | DOI:10.3103/s1068362312020033
- On generalized m-th root finsler metrics, Linear Algebra and its Applications, Volume 437 (2012) no. 2, p. 675 | DOI:10.1016/j.laa.2012.02.025
Cité par 16 documents. Sources : Crossref
Commentaires - Politique