[Sur les métriques racines m-ièmes ayant des propriétés de courbure spéciales]
Dans cette Note, nous montrons que toutes les métriques de Finsler racines m-ièmes ayant une courbure de Landsberg isotrope se réduisent à une métrique de Landsberg. Nous montrons ensuite que toutes les métriques de Finsler racines m-ièmes ayant une H-courbure presque nulle ont en fait une H-courbure nulle.
In this Note, we prove that every m-th root Finsler metric with isotropic Landsberg curvature reduces to a Landsberg metric. Then, we show that every m-th root metric with almost vanishing H-curvature has vanishing H-curvature.
Accepté le :
Publié le :
Akbar Tayebi 1 ; Behzad Najafi 2
@article{CRMATH_2011__349_11-12_691_0, author = {Akbar Tayebi and Behzad Najafi}, title = {On \protect\emph{m}-th root metrics with special curvature properties}, journal = {Comptes Rendus. Math\'ematique}, pages = {691--693}, publisher = {Elsevier}, volume = {349}, number = {11-12}, year = {2011}, doi = {10.1016/j.crma.2011.06.004}, language = {en}, }
Akbar Tayebi; Behzad Najafi. On m-th root metrics with special curvature properties. Comptes Rendus. Mathématique, Volume 349 (2011) no. 11-12, pp. 691-693. doi : 10.1016/j.crma.2011.06.004. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2011.06.004/
[1] Sur les espaces de Finsler á courbures sectionnelles constantes, Bull. Acad. Roy. Belg. Cl. Sci. (5), Volume LXXXIV (1988), pp. 281-322
[2] Numerical multilinear algebra of symmetric m-root structures. Spectral properties and applications, Symmetry Festival 2009, Budapest, Hungary (Symmetry: Culture and Science), Volume 21 (2010) no. 1–3, pp. 119-131
[3] CMC and minimal surfaces in Berwald–Moor spaces, Hypercomplex Numbers in Geometry and Physics, Volume 3 (2006) no. 2(6), pp. 113-122
[4] Applications of resultants in the spectral m-root framework, Applied Sciences, Volume 12 (2010), pp. 20-29
[5] Einstein equations for – Berwald–Moor relativistic models, Balkan. J. Geom. Appl., Volume 11 (2006) no. 2, pp. 20-26
[6] Berwald–Moor-type -metric physical models, Hypercomplex Numbers in Geometry and Physics, Volume 2 (2005) no. 2(4), pp. 114-122
[7] Finsler metrics of scalar flag curvature with special non-Riemannian curvature properties, Geom. Dedicata, Volume 131 (2008), pp. 87-97
[8] On m-th root Finsler metrics, J. Geom. Phys., Volume 61 (2011) no. 8, pp. 1479-1484
[9] On Einstein m-th root metrics, Differential Geometry and its Applications, Volume 28 (2010), pp. 290-294
Cité par Sources :
Commentaires - Politique