[Sur la théorie non linéaire à petite échelle dans les espaces d’opérateurs]
Nous commençons l’étude de la géométrie à petite échelle des espaces d’opérateurs. Les auteurs ont précédemment montré qu’une application entre espaces d’opérateurs qui est complètement grossière (c’est-à-dire que la séquence de ses amplifications est équi-grossière) doit être -linéaire. Nous obtenons une généralisation du résultat susmentionné aux applications complètement grossières définies sur la boule unité d’un espace d’opérateurs. En assouplissant la condition à une petite échelle, nous prouvons qu’il existe de nombreux exemples non linéaires d’applications qui sont complètement Lipschitz à petite échelle. Nous définissons un paramètre géométrique pour les espaces d’opérateurs hilbertiens homogènes qui impose des restrictions sur l’existence de telles applications.
We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps.
Révisé le :
Accepté le :
Publié le :
Keywords: Operator spaces, Coarse geometry, Embeddings
Mots-clés : Espaces d’opérateurs, Géométrie grossière, Injections
Bruno M. Braga 1 ; Javier Alejandro Chávez-Domínguez 2
@article{CRMATH_2024__362_G13_1893_0, author = {Bruno M. Braga and Javier Alejandro Ch\'avez-Dom{\'\i}nguez}, title = {On the small scale nonlinear theory of operator spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {1893--1914}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.678}, language = {en}, }
TY - JOUR AU - Bruno M. Braga AU - Javier Alejandro Chávez-Domínguez TI - On the small scale nonlinear theory of operator spaces JO - Comptes Rendus. Mathématique PY - 2024 SP - 1893 EP - 1914 VL - 362 PB - Académie des sciences, Paris DO - 10.5802/crmath.678 LA - en ID - CRMATH_2024__362_G13_1893_0 ER -
Bruno M. Braga; Javier Alejandro Chávez-Domínguez. On the small scale nonlinear theory of operator spaces. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1893-1914. doi : 10.5802/crmath.678. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.678/
[1] Completely coarse maps are -linear, Proc. Am. Math. Soc., Volume 149 (2021) no. 3, pp. 1139-1149 | DOI | Zbl
[2] Lipschitz geometry of operator spaces and Lipschitz-free operator spaces, Math. Ann., Volume 388 (2024) no. 1, pp. 1053-1090 | DOI | MR | Zbl
[3] Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, 30, Clarendon Press, 2004, x+387 pages (Oxford Science Publications) | DOI | MR | Zbl
[4] The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl
[5] Coarse geometry of operator spaces and complete isomorphic embeddings into and -sums of operator spaces, Math. Z., Volume 304 (2023) no. 3, 52, 19 pages | DOI | MR | Zbl
[6] On weaker notions of nonlinear embeddings between Banach spaces, J. Funct. Anal., Volume 274 (2018) no. 11, pp. 3149-3169 | DOI | MR | Zbl
[7] Towards a theory of coarse geometry of operator spaces, Isr. J. Math., Volume 259 (2024) no. 2, pp. 527-558 | DOI | MR | Zbl
[8] Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Isr. J. Math., Volume 57 (1987) no. 2, pp. 137-224 | DOI | MR | Zbl
[9] Completely bounded multilinear maps and -algebraic cohomology, Invent. Math., Volume 90 (1987) no. 2, pp. 279-296 | DOI | MR | Zbl
[10] On the complete boundedness of the Schur block product, Proc. Am. Math. Soc., Volume 147 (2019) no. 2, pp. 523-532 | DOI | MR | Zbl
[11] Completely bounded polynomials between operator spaces, Math. Scand., Volume 107 (2010) no. 2, pp. 249-266 | DOI | MR | Zbl
[12] Polynomials in operator space theory, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5493-5525 | DOI | MR | Zbl
[13] Integral mappings and the principle of local reflexivity for noncommutative -spaces, Ann. Math., Volume 151 (2000) no. 1, pp. 59-92 | DOI | MR | Zbl
[14] Operator spaces, London Mathematical Society Monographs. New Series, 23, Clarendon Press, 2000, xvi+363 pages | MR | Zbl
[15] Lipschitz-free Banach spaces, Stud. Math., Volume 159 (2003) no. 1, pp. 121-141 (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday) | DOI | MR | Zbl
[16] Exactness and uniform embeddability of discrete groups, J. Lond. Math. Soc., Volume 70 (2004) no. 3, pp. 703-718 | DOI | MR | Zbl
[17] Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | DOI | MR | Zbl
[18] Banach spaces determined by their uniform structures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 430-470 | DOI | MR | Zbl
[19] Factorization Theory for Spaces of Operators, 1996 (Habilitation Thesis, Kiel)
[20] The nonlinear geometry of Banach spaces, Rev. Mat. Complut., Volume 21 (2008) no. 1, pp. 7-60 | DOI | MR | Zbl
[21] Type and cotype of operator spaces, Stud. Math., Volume 185 (2008) no. 3, pp. 219-247 | DOI | MR | Zbl
[22] Weak type and weak cotype of operator spaces, Houston J. Math., Volume 35 (2009) no. 4, pp. 1171-1201 | MR | Zbl
[23] Metric cotype, Ann. Math., Volume 168 (2008) no. 1, pp. 247-298 | DOI | MR | Zbl
[24] Extension properties for the space of compact operators, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 251-308 | DOI | MR | Zbl
[25] Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, 2003, viii+478 pages | DOI | MR | Zbl
[26] Dvoretzky’s theorem for operator spaces, Houston J. Math., Volume 22 (1996) no. 2, pp. 399-416 | MR | Zbl
[27] Non-commutative vector valued -spaces and completely -summing maps, Astérisque, Société Mathématique de France, 1998 no. 247, vi+131 pages | Numdam | MR | Zbl
[28] Equivariant geometry of Banach spaces and topological groups, Forum Math. Sigma, Volume 5 (2017), e22, 62 pages | DOI | MR | Zbl
[29] A characterization of Banach spaces containing , Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 2411-2413 | DOI | MR | Zbl
[30] Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., Volume 140 (1911), pp. 1-28 | DOI | MR | Zbl
[31] An elementary proof of the restricted invertibility theorem, Isr. J. Math., Volume 190 (2012), pp. 83-91 | DOI | MR | Zbl
[32] Representation and geometry of operator spaces, Ph. D. Thesis, University of Houston (1995)
[33] Completely bounded Banach-Mazur distance, Proc. Edinb. Math. Soc., II. Ser., Volume 40 (1997) no. 2, pp. 247-260 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique