Comptes Rendus
Article de recherche - Théorie des opérateurs
On the small scale nonlinear theory of operator spaces
[Sur la théorie non linéaire à petite échelle dans les espaces d’opérateurs]
Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1893-1914.

Nous commençons l’étude de la géométrie à petite échelle des espaces d’opérateurs. Les auteurs ont précédemment montré qu’une application entre espaces d’opérateurs qui est complètement grossière (c’est-à-dire que la séquence de ses amplifications est équi-grossière) doit être -linéaire. Nous obtenons une généralisation du résultat susmentionné aux applications complètement grossières définies sur la boule unité d’un espace d’opérateurs. En assouplissant la condition à une petite échelle, nous prouvons qu’il existe de nombreux exemples non linéaires d’applications qui sont complètement Lipschitz à petite échelle. Nous définissons un paramètre géométrique pour les espaces d’opérateurs hilbertiens homogènes qui impose des restrictions sur l’existence de telles applications.

We initiate the study of the small scale geometry of operator spaces. The authors have previously shown that a map between operator spaces which is completely coarse (that is, the sequence of its amplifications is equi-coarse) must be -linear. We obtain a generalization of the aforementioned result to completely coarse maps defined on the unit ball of an operator space. By relaxing the condition to a small scale one, we prove that there are many non-linear examples of maps which are completely Lipschitz in small scale. We define a geometric parameter for homogeneous Hilbertian operator spaces which imposes restrictions on the existence of such maps.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.678
Classification : 47L25, 46L07, 46B80
Keywords: Operator spaces, Coarse geometry, Embeddings
Mots-clés : Espaces d’opérateurs, Géométrie grossière, Injections

Bruno M. Braga 1 ; Javier Alejandro Chávez-Domínguez 2

1 IMPA, Estrada Dona Castorina 110, 22460-320, Rio de Janeiro, Brazil
2 Department of Mathematics, University of Oklahoma, Norman, OK 73019-3103, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2024__362_G13_1893_0,
     author = {Bruno M. Braga and Javier Alejandro Ch\'avez-Dom{\'\i}nguez},
     title = {On the small scale nonlinear theory of operator spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1893--1914},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {362},
     year = {2024},
     doi = {10.5802/crmath.678},
     language = {en},
}
TY  - JOUR
AU  - Bruno M. Braga
AU  - Javier Alejandro Chávez-Domínguez
TI  - On the small scale nonlinear theory of operator spaces
JO  - Comptes Rendus. Mathématique
PY  - 2024
SP  - 1893
EP  - 1914
VL  - 362
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.678
LA  - en
ID  - CRMATH_2024__362_G13_1893_0
ER  - 
%0 Journal Article
%A Bruno M. Braga
%A Javier Alejandro Chávez-Domínguez
%T On the small scale nonlinear theory of operator spaces
%J Comptes Rendus. Mathématique
%D 2024
%P 1893-1914
%V 362
%I Académie des sciences, Paris
%R 10.5802/crmath.678
%G en
%F CRMATH_2024__362_G13_1893_0
Bruno M. Braga; Javier Alejandro Chávez-Domínguez. On the small scale nonlinear theory of operator spaces. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1893-1914. doi : 10.5802/crmath.678. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.678/

[1] Bruno M. Braga; Javier Alejandro Chávez-Domínguez Completely coarse maps are -linear, Proc. Am. Math. Soc., Volume 149 (2021) no. 3, pp. 1139-1149 | DOI | Zbl

[2] Bruno M. Braga; Javier Alejandro Chávez-Domínguez; Thomas Sinclair Lipschitz geometry of operator spaces and Lipschitz-free operator spaces, Math. Ann., Volume 388 (2024) no. 1, pp. 1053-1090 | DOI | MR | Zbl

[3] D. Blecher; C. Le Merdy Operator algebras and their modules—an operator space approach, London Mathematical Society Monographs. New Series, 30, Clarendon Press, 2004, x+387 pages (Oxford Science Publications) | DOI | MR | Zbl

[4] F. Baudier; G. Lancien; Th. Schlumprecht The coarse geometry of Tsirelson’s space and applications, J. Am. Math. Soc., Volume 31 (2018) no. 3, pp. 699-717 | DOI | MR | Zbl

[5] Bruno M. Braga; T. Oikhberg Coarse geometry of operator spaces and complete isomorphic embeddings into 1 and c 0 -sums of operator spaces, Math. Z., Volume 304 (2023) no. 3, 52, 19 pages | DOI | MR | Zbl

[6] Bruno M. Braga On weaker notions of nonlinear embeddings between Banach spaces, J. Funct. Anal., Volume 274 (2018) no. 11, pp. 3149-3169 | DOI | MR | Zbl

[7] Bruno M. Braga Towards a theory of coarse geometry of operator spaces, Isr. J. Math., Volume 259 (2024) no. 2, pp. 527-558 | DOI | MR | Zbl

[8] J. Bourgain; L. Tzafriri Invertibility of “large” submatrices with applications to the geometry of Banach spaces and harmonic analysis, Isr. J. Math., Volume 57 (1987) no. 2, pp. 137-224 | DOI | MR | Zbl

[9] E. Christensen; E. Effros; A. Sinclair Completely bounded multilinear maps and C * -algebraic cohomology, Invent. Math., Volume 90 (1987) no. 2, pp. 279-296 | DOI | MR | Zbl

[10] E. Christensen On the complete boundedness of the Schur block product, Proc. Am. Math. Soc., Volume 147 (2019) no. 2, pp. 523-532 | DOI | MR | Zbl

[11] S. Dineen; C. Radu Completely bounded polynomials between operator spaces, Math. Scand., Volume 107 (2010) no. 2, pp. 249-266 | DOI | MR | Zbl

[12] A. Defant; D. Wiesner Polynomials in operator space theory, J. Funct. Anal., Volume 266 (2014) no. 9, pp. 5493-5525 | DOI | MR | Zbl

[13] E. Effros; M. Junge; Z.-J. Ruan Integral mappings and the principle of local reflexivity for noncommutative L 1 -spaces, Ann. Math., Volume 151 (2000) no. 1, pp. 59-92 | DOI | MR | Zbl

[14] E. Effros; Z.-J. Ruan Operator spaces, London Mathematical Society Monographs. New Series, 23, Clarendon Press, 2000, xvi+363 pages | MR | Zbl

[15] G. Godefroy; N. J. Kalton Lipschitz-free Banach spaces, Stud. Math., Volume 159 (2003) no. 1, pp. 121-141 (Dedicated to Professor Aleksander Pełczyński on the occasion of his 70th birthday) | DOI | MR | Zbl

[16] E. Guentner; J. Kaminker Exactness and uniform embeddability of discrete groups, J. Lond. Math. Soc., Volume 70 (2004) no. 3, pp. 703-718 | DOI | MR | Zbl

[17] Stefan Heinrich Ultraproducts in Banach space theory, J. Reine Angew. Math., Volume 313 (1980), pp. 72-104 | DOI | MR | Zbl

[18] W. B. Johnson; J. Lindenstrauss; G. Schechtman Banach spaces determined by their uniform structures, Geom. Funct. Anal., Volume 6 (1996) no. 3, pp. 430-470 | DOI | MR | Zbl

[19] M. Junge Factorization Theory for Spaces of Operators, 1996 (Habilitation Thesis, Kiel)

[20] N. Kalton The nonlinear geometry of Banach spaces, Rev. Mat. Complut., Volume 21 (2008) no. 1, pp. 7-60 | DOI | MR | Zbl

[21] H. Lee Type and cotype of operator spaces, Stud. Math., Volume 185 (2008) no. 3, pp. 219-247 | DOI | MR | Zbl

[22] H. Lee Weak type (2,H) and weak cotype (2,H) of operator spaces, Houston J. Math., Volume 35 (2009) no. 4, pp. 1171-1201 | MR | Zbl

[23] M. Mendel; A. Naor Metric cotype, Ann. Math., Volume 168 (2008) no. 1, pp. 247-298 | DOI | MR | Zbl

[24] T. Oikhberg; H. Rosenthal Extension properties for the space of compact operators, J. Funct. Anal., Volume 179 (2001) no. 2, pp. 251-308 | DOI | MR | Zbl

[25] G. Pisier Introduction to Operator Space Theory, London Mathematical Society Lecture Note Series, 294, Cambridge University Press, 2003, viii+478 pages | DOI | MR | Zbl

[26] G. Pisier Dvoretzky’s theorem for operator spaces, Houston J. Math., Volume 22 (1996) no. 2, pp. 399-416 | MR | Zbl

[27] G. Pisier Non-commutative vector valued L p -spaces and completely p-summing maps, Astérisque, Société Mathématique de France, 1998 no. 247, vi+131 pages | Numdam | MR | Zbl

[28] C. Rosendal Equivariant geometry of Banach spaces and topological groups, Forum Math. Sigma, Volume 5 (2017), e22, 62 pages | DOI | MR | Zbl

[29] H. Rosenthal A characterization of Banach spaces containing l 1 , Proc. Natl. Acad. Sci. USA, Volume 71 (1974), pp. 2411-2413 | DOI | MR | Zbl

[30] J. Schur Bemerkungen zur Theorie der beschränkten Bilinearformen mit unendlich vielen Veränderlichen, J. Reine Angew. Math., Volume 140 (1911), pp. 1-28 | DOI | MR | Zbl

[31] D. Spielman; N. Srivastava An elementary proof of the restricted invertibility theorem, Isr. J. Math., Volume 190 (2012), pp. 83-91 | DOI | MR | Zbl

[32] Chun Zhang Representation and geometry of operator spaces, Ph. D. Thesis, University of Houston (1995)

[33] Chun Zhang Completely bounded Banach-Mazur distance, Proc. Edinb. Math. Soc., II. Ser., Volume 40 (1997) no. 2, pp. 247-260 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique