[Dynamique de sélection pour un modèle non local structuré par le phénotype]
Ce document est consacré à l’analyse du comportement à long terme d’un modèle structuré par le phénotype dans lequel les changements phénotypiques ne se produisent pas. Nous présentons une description mathématique du processus par lequel le trait le mieux adapté est sélectionné dans un environnement donné créé par la population totale. Il est démontré que la limite à long terme de la solution unique de l’équation non locale est représentée par un delta de Dirac concentré sur l’ensemble des ’s où le pic de l’aptitude est atteint. De plus, nos expériences numériques fournissent un critère suffisant pour identifier les positions du pic. Les résultats numériques obtenus sont en bon accord qualitatif avec les études théoriques et les données expérimentales rapportées dans la littérature.
This paper is devoted to the analysis of the long-time behavior of a phenotype-structured model in which phenotypic changes do not occur. We present a mathematical description of the process through which the best adapted trait is selected in a given environment created by the total population. It is demonstrated that the long-time limit of the unique solution to the nonlocal equation is represented by a delta Dirac concentrated on the set of ’s where the peak of the fitness is attained. Furthermore, our numerical experiments provide a sufficient criterion to identify the positions of the peak. The obtained numerical results are in good qualitative agreement with theoretical studies and experimental data reported in the literature.
Révisé le :
Accepté le :
Publié le :
Shen Bian 1 ; Jiale Bu 1

@article{CRMATH_2025__363_G1_13_0, author = {Shen Bian and Jiale Bu}, title = {On selection dynamics for a nonlocal phenotype-structured model}, journal = {Comptes Rendus. Math\'ematique}, pages = {13--27}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.696}, language = {en}, }
Shen Bian; Jiale Bu. On selection dynamics for a nonlocal phenotype-structured model. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 13-27. doi : 10.5802/crmath.696. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.696/
[1] The mathematics of Darwin’s legacy (Fabio A. C. C. Chalub; José Francisco Rodrigues, eds.), Mathematics and Biosciences in Interaction, Springer, 2011, viii+293 pages | DOI | MR
[2] Evolution of a structured cell population endowed with plasticity of traits under constraints on and between the traits, J. Math. Biol., Volume 85 (2022) no. 6-7, 64, 49 pages | DOI | MR | Zbl
[3] Concentration in Lotka–Volterra parabolic or integral equations: a general convergence result, Methods Appl. Anal., Volume 16 (2009) no. 3, pp. 321-340 | DOI | MR | Zbl
[4] The mathematical theory of selection, recombination, and mutation, Wiley Series in Mathematical and Computational Biology, John Wiley & Sons, 2000, xii+409 pages | MR
[5] Stationary distributions under mutation-selection balance: structure and properties, Adv. Appl. Probab., Volume 28 (1996) no. 1, pp. 227-251 | DOI | MR | Zbl
[6] Emergence of drug tolerance in cancer cell populations: an evolutionary outcome of selection, nongenetic instability, and stress-induced adaptation, Cancer Res., Volume 75 (2015) no. 6, pp. 930-939 | DOI
[7] On selection dynamics for continuous structured populations, Commun. Math. Sci., Volume 6 (2008) no. 3, pp. 729-747 | DOI | MR | Zbl
[8] A beginner’s guide to adaptive dynamics, Mathematical modelling of population dynamics (Ryszard Rudnicki, ed.) (Banach Center Publications), Volume 63, Polish Academy of Sciences, 2004, pp. 47-86 | MR | Zbl
[9] The dynamics of adaptation: an illuminating example and a Hamilton–Jacobi approach, Theor. Popul. Biol., Volume 67 (2005) no. 4, pp. 257-271 | DOI | Zbl
[10] Long time evolutionary dynamics of phenotypically structured populations in time-periodic environments, SIAM J. Math. Anal., Volume 50 (2018) no. 5, pp. 5537-5568 | DOI | MR | Zbl
[11] Dynamics of Adaptation and Evolutionary Branching, Phys. Rev. Lett., Volume 78 (1997), pp. 2024-2027 | DOI
[12] On selection dynamics for competitive interactions, J. Math. Biol., Volume 63 (2011) no. 3, pp. 493-517 | DOI | MR | Zbl
[13] Selection-mutation dynamics with spatial dependence, J. Math. Pures Appl., Volume 176 (2023), pp. 1-17 | DOI | MR | Zbl
[14] A structured population model of clonal selection in acute leukemias with multiple maturation stages, J. Math. Biol., Volume 79 (2019) no. 5, pp. 1587-1621 | DOI | MR | Zbl
[15] Asymptotic analysis of selection-mutation models in the presence of multiple fitness peaks, Nonlinearity, Volume 33 (2020) no. 11, pp. 5791-5816 | DOI | MR | Zbl
[16] Evolutionary dynamics in an SI epidemic model with phenotype-structured susceptible compartment, J. Math. Biol., Volume 83 (2021) no. 6-7, 72, 30 pages | DOI | MR | Zbl
[17] The role of spatial variations of abiotic factors in mediating intratumour phenotypic heterogeneity, J. Theor. Biol., Volume 451 (2018), pp. 101-110 | DOI | MR | Zbl
[18] Modeling the effects of space structure and combination therapies on phenotypic heterogeneity and drug resistance in solid tumors, Bull. Math. Biol., Volume 77 (2015) no. 1, pp. 1-22 | DOI | MR | Zbl
[19] Populational adaptive evolution, chemotherapeutic resistance and multiple anti-cancer therapies, ESAIM, Math. Model. Numer. Anal., Volume 47 (2013) no. 2, pp. 377-399 | DOI | Numdam | MR | Zbl
[20] Transport equations in biology, Frontiers in Mathematics, Birkhäuser, 2007, x+198 pages | DOI | MR
[21] Parabolic equations in biology. Growth, reaction, movement and diffusion, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, 2015, xii+199 pages | DOI | MR
[22] Dirac concentrations in Lotka–Volterra parabolic PDEs, Indiana Univ. Math. J., Volume 57 (2008) no. 7, pp. 3275-3301 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique