[Convergence vers l'équilibre pour des systèmes compétitifs de Lotka–Volterra et du Chémostat]
Accepté le :
Publié le :
Nicolas Champagnat 1 ; Pierre-Emmanuel Jabin 1, 2 ; Gaël Raoul 3
@article{CRMATH_2010__348_23-24_1267_0, author = {Nicolas Champagnat and Pierre-Emmanuel Jabin and Ga\"el Raoul}, title = {Convergence to equilibrium in competitive {Lotka{\textendash}Volterra} and chemostat systems}, journal = {Comptes Rendus. Math\'ematique}, pages = {1267--1272}, publisher = {Elsevier}, volume = {348}, number = {23-24}, year = {2010}, doi = {10.1016/j.crma.2010.11.001}, language = {en}, }
TY - JOUR AU - Nicolas Champagnat AU - Pierre-Emmanuel Jabin AU - Gaël Raoul TI - Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems JO - Comptes Rendus. Mathématique PY - 2010 SP - 1267 EP - 1272 VL - 348 IS - 23-24 PB - Elsevier DO - 10.1016/j.crma.2010.11.001 LA - en ID - CRMATH_2010__348_23-24_1267_0 ER -
%0 Journal Article %A Nicolas Champagnat %A Pierre-Emmanuel Jabin %A Gaël Raoul %T Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems %J Comptes Rendus. Mathématique %D 2010 %P 1267-1272 %V 348 %N 23-24 %I Elsevier %R 10.1016/j.crma.2010.11.001 %G en %F CRMATH_2010__348_23-24_1267_0
Nicolas Champagnat; Pierre-Emmanuel Jabin; Gaël Raoul. Convergence to equilibrium in competitive Lotka–Volterra and chemostat systems. Comptes Rendus. Mathématique, Volume 348 (2010) no. 23-24, pp. 1267-1272. doi : 10.1016/j.crma.2010.11.001. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2010.11.001/
[1] N. Champagnat, S. Méléard, Polymorphic evolution sequence and evolutionary branching, Probab. Theor. Relat. Fields (2010), , in press. | DOI
[2] N. Champagnat, P.E. Jabin, The evolutionary limit for models of populations interacting competitively with many resources, preprint, 2010.
[3] A beginner's guide to adaptive dynamics, Banach Center Publications, Volume 63 (2004), pp. 47-86
[4] The dynamics of adaptation: An illuminating example and a Hamilton–Jacobi approach, Theor. Popul. Biol., Volume 67 (2005), pp. 257-271
[5] Global asymptotic stability in Volterra's population systems, J. Math. Biology, Volume 19 (1984), pp. 157-168
[6] Systems of differential equations which are competitive or cooperative. III. Competing species, Nonlinearity, Volume 1 (1988) no. 1, pp. 51-71
[7] Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998
[8] P.E. Jabin, G. Raoul, Selection dynamics with competition, J. Math. Biol., in press.
[9] Qualitative behavior of n-dimensional ratio-dependent predator–prey systems, Appl. Math. Comput., Volume 199 (2008) no. 2, pp. 535-546
[10] Adaptive dynamics: a geometrical study of the consequences of nearly faithful reproduction (S.J. van Strien; S.M. Verduyn Lunel, eds.), Stochastic and Spatial Structures of Dynamical Systems, North-Holland, Amsterdam, 1996, pp. 183-231
[11] Transport Equations in Biology, Frontiers in Mathematics, Birkhäuser, 2007
[12] The Theory of the Chemostat, Dynamics of Microbial Competition, Cambridge Studies in Mathematical Biology, vol. 13, Cambridge University Press, 1995
[13] Hopf bifurcations in competitive three-dimensional Lotka–Volterra systems, Dynam. Stability Systems, Volume 8 (1993) no. 3, pp. 189-217
- Complex systems in ecology: a guided tour with large Lotka–Volterra models and random matrices, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 480 (2024) no. 2285 | DOI:10.1098/rspa.2023.0284
- Selection-mutation dynamics with spatial dependence, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 176 (2023), pp. 1-17 | DOI:10.1016/j.matpur.2023.06.001 | Zbl:1518.35102
- Measure framework for the pure selection equation: global well posedness and numerical investigations, MathematicS In Action, Volume 12 (2023), pp. 155-173 | DOI:10.5802/msia.36 | Zbl:1526.45005
- Exactly solvable quadratic differential equation systems through generalized inversion, Qualitative Theory of Dynamical Systems, Volume 22 (2023) no. 1, p. 13 (Id/No 37) | DOI:10.1007/s12346-023-00738-7 | Zbl:1517.34020
- An asymptotic preserving scheme for capturing concentrations in age-structured models arising in adaptive dynamics, Journal of Computational Physics, Volume 464 (2022), p. 26 (Id/No 111335) | DOI:10.1016/j.jcp.2022.111335 | Zbl:7540368
- Stacked invasion waves in a competition-diffusion model with three species, Journal of Differential Equations, Volume 271 (2021), pp. 665-718 | DOI:10.1016/j.jde.2020.09.008 | Zbl:1454.35216
- Global stability of nonhomogeneous equilibrium solution for the diffusive Lotka-Volterra competition model, Calculus of Variations and Partial Differential Equations, Volume 59 (2020) no. 4, p. 28 (Id/No 132) | DOI:10.1007/s00526-020-01794-6 | Zbl:1445.35046
- From adaptive dynamics to adaptive walks, Journal of Mathematical Biology, Volume 79 (2019) no. 5, pp. 1699-1747 | DOI:10.1007/s00285-019-01408-6 | Zbl:1430.37111
- A probabilistic approach to Dirac concentration in nonlocal models of adaptation with several resources, The Annals of Applied Probability, Volume 29 (2019) no. 4, pp. 2175-2216 | DOI:10.1214/18-aap1446 | Zbl:1466.60054
- Multi‐agent modelling and simulation of graph‐based predator–prey dynamic systems: A BDI approach, Expert Systems, Volume 35 (2018) no. 5 | DOI:10.1111/exsy.12263
- Global stability with selection in integro-differential Lotka-Volterra systems modelling trait-structured populations, Journal of Biological Dynamics, Volume 12 (2018) no. 1, pp. 872-893 | DOI:10.1080/17513758.2018.1515994 | Zbl:1447.92360
- Dirac concentrations in a chemostat model of adaptive evolution, Chinese Annals of Mathematics. Series B, Volume 38 (2017) no. 2, pp. 513-538 | DOI:10.1007/s11401-017-1081-x | Zbl:1367.35020
- Cellulose biodegradation models; an example of cooperative interactions in structured populations, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 51 (2017) no. 6, p. 2289 | DOI:10.1051/m2an/2017021
- Entropy satisfying schemes for computing selection dynamics in competitive interactions, SIAM Journal on Numerical Analysis, Volume 53 (2015) no. 3, pp. 1393-1417 | DOI:10.1137/140965739 | Zbl:1318.65085
- Adaptation in a stochastic multi-resources chemostat model, Journal de Mathématiques Pures et Appliquées. Neuvième Série, Volume 101 (2014) no. 6, pp. 755-788 | DOI:10.1016/j.matpur.2013.10.003 | Zbl:1322.92052
- Direct competition results from strong competition for limited resource, Journal of Mathematical Biology, Volume 68 (2014) no. 4, pp. 931-949 | DOI:10.1007/s00285-013-0659-5 | Zbl:1293.35346
- A Scalable Computational Framework for Establishing Long-Term Behavior of Stochastic Reaction Networks, PLoS Computational Biology, Volume 10 (2014) no. 6, p. e1003669 | DOI:10.1371/journal.pcbi.1003669
- Long-term behaviour of phenotypically structured models, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 470 (2014) no. 2167, p. 20140089 | DOI:10.1098/rspa.2014.0089
- Evolution of species trait through resource competition, Journal of Mathematical Biology, Volume 64 (2012) no. 7, pp. 1189-1223 | DOI:10.1007/s00285-011-0447-z | Zbl:1279.92060
- Small populations corrections for selection-mutation models, Networks Heterogeneous Media, Volume 7 (2012) no. 4, p. 805 | DOI:10.3934/nhm.2012.7.805
- The evolutionary limit for models of populations interacting competitively via several resources, Journal of Differential Equations, Volume 251 (2011) no. 1, pp. 176-195 | DOI:10.1016/j.jde.2011.03.007 | Zbl:1227.35040
Cité par 21 documents. Sources : Crossref, zbMATH
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier