Comptes Rendus
Article de recherche - Physique mathématique, Probabilités
A simple construction of the Anderson operator via its quadratic form in dimensions two and three
[Une construction simple de l’opérateur d’Anderson par sa forme quadratique en dimensions deux et trois]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 183-197.

Nous fournissons une construction simple de l’opérateur d’Anderson en dimensions deux et trois. Cela est réalisé à travers sa forme quadratique. Nous nous appuyons sur une transformation exponentielle au lieu des structures de régularité ou du calcul paracontrôlé, qui sont généralement utilisés pour la construction de l’opérateur. La connaissance de la forme est suffisamment robuste pour déduire des propriétés importantes telles que la positivité et l’irréductibilité du semi-groupe correspondant. Cette dernière propriété permet de démontrer l’existence d’un trou spectral.

We provide a simple construction of the Anderson operator in dimensions two and three. This is done through its quadratic form. We rely on an exponential transform instead of the regularity structures or paracontrolled calculus which are usually used for the construction of the operator. The knowledge of the form is robust enough to deduce important properties such as positivity and irreducibility of the corresponding semigroup. The latter property gives existence of a spectral gap.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.712
Classification : 60H25, 60H17, 35J10
Keywords: Anderson form, singular stochastic operator, Schrödinger operator, renormalization, positivity, spectral gap
Mots-clés : Forme d’Anderson, opérateurs stochastiques singuliers, opérateur de Schrödinger, renormalisation, positivité, trou spectral

Antoine Mouzard 1 ; El Maati Ouhabaz 2

1 Modal’X – UMR CNRS 9023, Université Paris Nanterre, 92000 Nanterre, France
2 Université de Bordeaux, IMB, 351 cours de la Libération, 33405 Talence, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G2_183_0,
     author = {Antoine Mouzard and El Maati Ouhabaz},
     title = {A simple construction of the {Anderson} operator via its quadratic form in dimensions two and three},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {183--197},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.712},
     language = {en},
}
TY  - JOUR
AU  - Antoine Mouzard
AU  - El Maati Ouhabaz
TI  - A simple construction of the Anderson operator via its quadratic form in dimensions two and three
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 183
EP  - 197
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.712
LA  - en
ID  - CRMATH_2025__363_G2_183_0
ER  - 
%0 Journal Article
%A Antoine Mouzard
%A El Maati Ouhabaz
%T A simple construction of the Anderson operator via its quadratic form in dimensions two and three
%J Comptes Rendus. Mathématique
%D 2025
%P 183-197
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.712
%G en
%F CRMATH_2025__363_G2_183_0
Antoine Mouzard; El Maati Ouhabaz. A simple construction of the Anderson operator via its quadratic form in dimensions two and three. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 183-197. doi : 10.5802/crmath.712. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.712/

[1] Romain Allez; Khalil Chouk The continuous Anderson hamiltonian in dimension two (2015) | arXiv

[2] Hajer Bahouri; Jean-Yves Chemin; Raphaël Danchin Fourier analysis and nonlinear partial differential equations, Grundlehren der Mathematischen Wissenschaften, 343, Springer, 2011, xvi+523 pages | DOI | MR

[3] Ismael Bailleul; Nguyen Viet Dang; Léonard Ferdinand; T. D. Tô Φ34 measures on compact Riemannian 3-manifolds (2024) | arXiv

[4] Ismael Bailleul; Nguyen Viet Dang; Antoine Mouzard Analysis of the Anderson operator (2023) | arXiv

[5] Yvain Bruned; Ajay Chandra; Ilya Chevyrev; Martin Hairer Renormalising SPDEs in regularity structures, J. Eur. Math. Soc., Volume 23 (2021) no. 3, pp. 869-947 | DOI | MR | Zbl

[6] Yvain Bruned; Martin Hairer; Lorenzo Zambotti Algebraic renormalisation of regularity structures, Invent. Math., Volume 215 (2019) no. 3, pp. 1039-1156 | DOI | MR

[7] Ajay Chandra; Martin Hairer An analytic BPHZ theorem for regularity structures (2018) | arXiv

[8] Quentin Chauleur; Antoine Mouzard The logarithmic Schrödinger equation with spatial white noise on the full space (2023) | arXiv

[9] Khalil Chouk; Willem van Zuijlen Asymptotics of the eigenvalues of the Anderson Hamiltonian with white noise potential in two dimensions, Ann. Probab., Volume 49 (2021) no. 4, pp. 1917-1964 | DOI | MR | Zbl

[10] Arnaud Debussche; Hendrik Weber The Schrödinger equation with spatial white noise potential, Electron. J. Probab., Volume 23 (2018), 28, 16 pages | DOI | MR | Zbl

[11] Laure Dumaz; Cyril Labbé Localization crossover for the continuous Anderson Hamiltonian in 1-d, Invent. Math., Volume 235 (2024) no. 2, pp. 345-440 | DOI | MR | Zbl

[12] Masatoshi Fukushima; Shintaro Nakao On spectra of the Schrödinger operator with a white Gaussian noise potential, Z. Wahrscheinlichkeitstheor. Verw. Geb., Volume 37 (1977) no. 3, pp. 267-274 | DOI | MR | Zbl

[13] Massimiliano Gubinelli; Peter Imkeller; Nicolas Perkowski Paracontrolled distributions and singular PDEs, Forum Math. Pi, Volume 3 (2015), e6, 75 pages | DOI | MR | Zbl

[14] Massimiliano Gubinelli; Nicolas Perkowski KPZ reloaded, Commun. Math. Phys., Volume 349 (2017) no. 1, pp. 165-269 | DOI | MR | Zbl

[15] Massimiliano Gubinelli; Baris Evren Ugurcan; Immanuel Zachhuber Semilinear evolution equations for the Anderson Hamiltonian in two and three dimensions, Stoch. Partial Differ. Equ., Anal. Comput., Volume 8 (2020) no. 1, pp. 82-149 | DOI | MR | Zbl

[16] Martin Hairer A theory of regularity structures, Invent. Math., Volume 198 (2014) no. 2, pp. 269-504 | DOI | MR | Zbl

[17] Martin Hairer; Cyril Labbé A simple construction of the continuum parabolic Anderson model on R2, Electron. Commun. Probab., Volume 20 (2015), 43, 11 pages | DOI | MR | Zbl

[18] Aukosh Jagannath; Nicolas Perkowski A simple construction of the dynamical Φ34 model, Trans. Am. Math. Soc., Volume 376 (2023) no. 3, pp. 1507-1522 | DOI | MR | Zbl

[19] Cyril Labbé The continuous Anderson Hamiltonian in d3, J. Funct. Anal., Volume 277 (2019) no. 9, pp. 3187-3235 | DOI | MR | Zbl

[20] Toyomu Matsuda; Willem van Zuijlen Anderson Hamiltonians with singular potentials (2024) | arXiv

[21] Léo Morin; Antoine Mouzard 2D random magnetic Laplacian with white noise magnetic field, Stochastic Processes Appl., Volume 143 (2022), pp. 160-184 | DOI | MR | Zbl

[22] Antoine Mouzard The infinitesimal generator of the Brox diffusion (2022) | arXiv

[23] Antoine Mouzard Weyl law for the Anderson Hamiltonian on a two-dimensional manifold, Ann. Inst. Henri Poincaré, Probab. Stat., Volume 58 (2022) no. 3, pp. 1385-1425 | DOI | MR | Zbl

[24] Antoine Mouzard; Immanuel Zachhuber Strichartz inequalities with white noise potential on compact surfaces, Anal. PDE, Volume 17 (2024) no. 2, pp. 421-454 | DOI | MR | Zbl

[25] El Maati Ouhabaz Analysis of heat equations on domains, London Mathematical Society Monographs, 31, Princeton University Press, 2005, xiv+284 pages | MR

[26] Raymond Edward Alan Christopher Paley; Antoni Zygmund On some series of functions. I, II., Proc. Camb. Philos. Soc., Volume 26 (1930), p. 337-357, 458–474 | Zbl

[27] Raymond Edward Alan Christopher Paley; Antoni Zygmund On some series of functions. III, Proc. Camb. Philos. Soc., Volume 28 (1932), pp. 190-205 | Zbl

[28] Nikolay Tzvetkov; Nicola Visciglia Two dimensional nonlinear Schrödinger equation with spatial white noise potential and fourth order nonlinearity, Stoch. Partial Differ. Equ., Anal. Comput., Volume 11 (2023) no. 3, pp. 948-987 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique