[Semi-continuité inférieure des énergies
We characterize the lower-semicontinuity of nonlocal one-dimensional energies of the type
|
where
Nous caractérisons la semi-continuité inférieure des énergies non locales unidimensionnelles
|
où I est un intervalle ouvert et borné dans l’axe réel,
Accepté le :
Accepté après révision le :
Publié le :
Keywords: Cartesian submaximality, nonlocal
Mots-clés : Sous-maximalité cartésienne, énergies
José Matias 1 ; Pedro Miguel Santos 1 ; Elvira Zappale 2, 3

@article{CRMATH_2025__363_G4_407_0, author = {Jos\'e Matias and Pedro Miguel Santos and Elvira Zappale}, title = {Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$}, journal = {Comptes Rendus. Math\'ematique}, pages = {407--414}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.726}, language = {en}, }
TY - JOUR AU - José Matias AU - Pedro Miguel Santos AU - Elvira Zappale TI - Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$ JO - Comptes Rendus. Mathématique PY - 2025 SP - 407 EP - 414 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.726 LA - en ID - CRMATH_2025__363_G4_407_0 ER -
José Matias; Pedro Miguel Santos; Elvira Zappale. Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 407-414. doi : 10.5802/crmath.726. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.726/
[1] The class of functionals which can be represented by a supremum, J. Convex Anal., Volume 9 (2002) no. 1, pp. 225-236 | MR | Zbl
[2]
[3] Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization, J. Math. Pures Appl. (9), Volume 69 (1990) no. 3, pp. 307-333 | MR | Zbl
[4] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000, xviii+434 pages | DOI | MR | Zbl
[5] Minimization problems for the functional
[6] Minimization problems for the functional
[7] Extension of functions satisfying Lipschitz conditions, Ark. Mat., Volume 6 (1967), pp. 551-561 | DOI | MR | Zbl
[8] On the partial differential equation
[9] Vectorial variational principles in
[10] Lower semicontinuity of
[11] Hyperelasticity as a
[12] Approximation of
[13] A necessary and sufficient condition for the weak lower semicontinuity of one-dimensional non-local variational integrals, Proc. R. Soc. Edinb., Sect. A, Math., Volume 136 (2006) no. 4, pp. 701-708 | DOI | MR | Zbl
[14] Integral representation results for functionals defined on
[15] Validity and failure of the integral representation of
[16] Non-local functionals related to the total variation and connections with image processing, Ann. PDE, Volume 4 (2018) no. 1, 9, 77 pages | DOI | MR | Zbl
[17]
[18] A sufficient condition for the lower semicontinuity of nonlocal supremal functionals in the vectorial case, Eur. J. Math., Volume 9 (2023) no. 3, 75, 8 pages | DOI | MR | Zbl
[19] Variational problems in
[20] Minimisers of supremal functionals and mass-minimising 1-currents, Calc. Var. Partial Differ. Equ., Volume 64 (2025) no. 1, 26, 30 pages | DOI | MR | Zbl
[21] Cartesian convexity as the key notion in the variational existence theory for nonlocal supremal functionals, Nonlinear Anal., Theory Methods Appl., Volume 225 (2022), 113111, 33 pages | DOI | MR | Zbl
[22] Quasiconvexity in the fractional calculus of variations: characterization of lower semicontinuity and relaxation, Nonlinear Anal., Theory Methods Appl., Volume 215 (2022), 112625, 26 pages | DOI | MR | Zbl
[23] Lower semicontinuity and relaxation of nonlocal
[24] Nonlocal variational principles, Nonlinear Anal., Theory Methods Appl., Volume 29 (1997) no. 12, pp. 1379-1392 | DOI | MR | Zbl
[25] On non-locality in the calculus of variations, SeMA J., Volume 78 (2021) no. 4, pp. 435-456 | DOI | MR | Zbl
[26] Continuum limit of Lipschitz learning on graphs, Found. Comput. Math., Volume 23 (2023) no. 2, pp. 393-431 | DOI | MR | Zbl
[27] Characterization of lower semicontinuity and relaxation of fractional integral and supremal functionals, Ph. D. Thesis, University of Utrecht (The Netherlands) (2021) (Online at https://studenttheses.uu.nl/bitstream/handle/20.500.12932/41293/MasterThesisFinal.pdf)
Cité par Sources :
Commentaires - Politique