Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Lower semicontinuity of nonlocal L energies on SBV0(I)
[Semi-continuité inférieure des énergies L non locales sur SBV0(I)]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 407-414.

We characterize the lower-semicontinuity of nonlocal one-dimensional energies of the type

esssup(s,t)I×Ih([u](s),[u](t)),

where I is an open and bounded interval in the real line, uSBV0(I) and [u](r):=u(r+)u(r), with rI.

Nous caractérisons la semi-continuité inférieure des énergies non locales unidimensionnelles

esssup(s,t)I×Ih([u](s),[u](t)),

où I est un intervalle ouvert et borné dans l’axe réel, uSBV0(I) et [u](r):=u(r+)u(r) avec rI.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.726
Classification : 49J45, 26B25, 26A45, 26A51
Keywords: Cartesian submaximality, nonlocal L energies, interfacial energy, lower semicontinuity, nonlocal gradients, supremal functionals
Mots-clés : Sous-maximalité cartésienne, énergies L non locales, énergie interfaciale, semi-continuité inférieure, gradients non locaux, fonctionnelles suprémales

José Matias 1 ; Pedro Miguel Santos 1 ; Elvira Zappale 2, 3

1 Departamento de Matemática, Instituto Superior Técnico, University of Lisbon, Portugal
2 Department of Basic and Applied Sciences for Engineering, Sapienza-University of Rome, via A. Scarpa 16, 00161 Roma, Italy
3 CIMA, Universidade de Évora, Portugal
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G4_407_0,
     author = {Jos\'e Matias and Pedro Miguel Santos and Elvira Zappale},
     title = {Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {407--414},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.726},
     language = {en},
}
TY  - JOUR
AU  - José Matias
AU  - Pedro Miguel Santos
AU  - Elvira Zappale
TI  - Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 407
EP  - 414
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.726
LA  - en
ID  - CRMATH_2025__363_G4_407_0
ER  - 
%0 Journal Article
%A José Matias
%A Pedro Miguel Santos
%A Elvira Zappale
%T Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$
%J Comptes Rendus. Mathématique
%D 2025
%P 407-414
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.726
%G en
%F CRMATH_2025__363_G4_407_0
José Matias; Pedro Miguel Santos; Elvira Zappale. Lower semicontinuity of nonlocal $L^\infty $ energies on $SBV_0(I)$. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 407-414. doi : 10.5802/crmath.726. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.726/

[1] Emilio Acerbi; Giuseppe Buttazzo; Francesca Prinari The class of functionals which can be represented by a supremum, J. Convex Anal., Volume 9 (2002) no. 1, pp. 225-236 | MR | Zbl

[2] Roberto Alicandro; Andrea Braides; Marco Cicalese L energies on discontinuous functions, Discrete Contin. Dyn. Syst., Volume 12 (2005) no. 5, pp. 905-928 | DOI | MR | Zbl

[3] Luigi Ambrosio; Andrea Braides Functionals defined on partitions in sets of finite perimeter. II. Semicontinuity, relaxation and homogenization, J. Math. Pures Appl. (9), Volume 69 (1990) no. 3, pp. 307-333 | MR | Zbl

[4] Luigi Ambrosio; Nicola Fusco; Diego Pallara Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Clarendon Press, 2000, xviii+434 pages | DOI | MR | Zbl

[5] Gunnar Aronsson Minimization problems for the functional supxF(x,f(x),f(x)), Ark. Mat., Volume 6 (1965), pp. 33-53 | DOI | MR | Zbl

[6] Gunnar Aronsson Minimization problems for the functional supxF(x,f(x),f(x)). II, Ark. Mat., Volume 6 (1966), pp. 409-431 | DOI | MR | Zbl

[7] Gunnar Aronsson Extension of functions satisfying Lipschitz conditions, Ark. Mat., Volume 6 (1967), pp. 551-561 | DOI | MR | Zbl

[8] Gunnar Aronsson On the partial differential equation ux2uxx+2uxuyuxy+uy2uyy=0, Ark. Mat., Volume 7 (1968), pp. 395-425 | DOI | MR | Zbl

[9] Birzhan Ayanbayev; Nikos Katzourakis Vectorial variational principles in L and their characterisation through PDE systems, Appl. Math. Optim., Volume 83 (2021) no. 2, pp. 833-848 | DOI | MR | Zbl

[10] Emmanuel Nicholas Barron; Robert R. Jensen; Chang You Wang Lower semicontinuity of L functionals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001) no. 4, pp. 495-517 | DOI | Numdam | MR | Zbl

[11] José C. Bellido; Carlos Mora-Corral; Pablo Pedregal Hyperelasticity as a Γ-limit of peridynamics when the horizon goes to zero, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 2, pp. 1643-1670 | DOI | MR | Zbl

[12] Giacomo Bertazzoni; Michela Eleuteri; Elvira Zappale Approximation of L functionals with generalized Orlicz norms (2024) https://link.springer.com/... To appear in Ann. Mat. Pura Appl. (4)

[13] Jonathan Bevan; Pablo Pedregal A necessary and sufficient condition for the weak lower semicontinuity of one-dimensional non-local variational integrals, Proc. R. Soc. Edinb., Sect. A, Math., Volume 136 (2006) no. 4, pp. 701-708 | DOI | MR | Zbl

[14] Andrea Braides; Valeria Chiadò Piat Integral representation results for functionals defined on SBV(Ω;Rm), J. Math. Pures Appl. (9), Volume 75 (1996) no. 6, pp. 595-626 | MR | Zbl

[15] Andrea Braides; Gianni Dal Maso Validity and failure of the integral representation of Γ-limits of convex non-local functionals, J. Funct. Anal., Volume 286 (2024) no. 6, 110317, 26 pages | DOI | MR | Zbl

[16] Haïm Brezis; Hoai-Minh Nguyen Non-local functionals related to the total variation and connections with image processing, Ann. PDE, Volume 4 (2018) no. 1, 9, 77 pages | DOI | MR | Zbl

[17] Thierry Champion; Luigi De Pascale; Francesca Prinari Γ-convergence and absolute minimizers for supremal functionals, ESAIM, Control Optim. Calc. Var., Volume 10 (2004) no. 1, pp. 14-27 | DOI | MR | Zbl

[18] Giuliano Gargiulo; Elvira Zappale A sufficient condition for the lower semicontinuity of nonlocal supremal functionals in the vectorial case, Eur. J. Math., Volume 9 (2023) no. 3, 75, 8 pages | DOI | MR | Zbl

[19] Nikos Katzourakis; Roger Moser Variational problems in L involving semilinear second order differential operators, ESAIM, Control Optim. Calc. Var., Volume 29 (2023), 76, 21 pages | DOI | MR | Zbl

[20] Nikos Katzourakis; Roger Moser Minimisers of supremal functionals and mass-minimising 1-currents, Calc. Var. Partial Differ. Equ., Volume 64 (2025) no. 1, 26, 30 pages | DOI | MR | Zbl

[21] Carolin Kreisbeck; Antonella Ritorto; Elvira Zappale Cartesian convexity as the key notion in the variational existence theory for nonlocal supremal functionals, Nonlinear Anal., Theory Methods Appl., Volume 225 (2022), 113111, 33 pages | DOI | MR | Zbl

[22] Carolin Kreisbeck; Hidde Schönberger Quasiconvexity in the fractional calculus of variations: characterization of lower semicontinuity and relaxation, Nonlinear Anal., Theory Methods Appl., Volume 215 (2022), 112625, 26 pages | DOI | MR | Zbl

[23] Carolin Kreisbeck; Elvira Zappale Lower semicontinuity and relaxation of nonlocal L-functionals, Calc. Var. Partial Differ. Equ., Volume 59 (2020) no. 4, 138, 36 pages | DOI | MR | Zbl

[24] Pablo Pedregal Nonlocal variational principles, Nonlinear Anal., Theory Methods Appl., Volume 29 (1997) no. 12, pp. 1379-1392 | DOI | MR | Zbl

[25] Pablo Pedregal On non-locality in the calculus of variations, SeMA J., Volume 78 (2021) no. 4, pp. 435-456 | DOI | MR | Zbl

[26] Tim Roith; Leon Bungert Continuum limit of Lipschitz learning on graphs, Found. Comput. Math., Volume 23 (2023) no. 2, pp. 393-431 | DOI | MR | Zbl

[27] Hidde Schönberger Characterization of lower semicontinuity and relaxation of fractional integral and supremal functionals, Ph. D. Thesis, University of Utrecht (The Netherlands) (2021) (Online at https://studenttheses.uu.nl/bitstream/handle/20.500.12932/41293/MasterThesisFinal.pdf)

Cité par Sources :

Commentaires - Politique