Comptes Rendus
Article de recherche - Équations aux dérivées partielles
On the existence of degenerate solutions of the two-dimensional H-system
[Sur l’existence de solutions dégénérées du H-système en dimension deux]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 271-281.

Nous considérons des solutions entières ωH˙1(R2;R3) du H-système

Δω=2ωxωy,

appelées bulles. De manière surprenante, et contrairement à des conjectures exprimées dans la littérature, nous montrons que les bulles de degré au moins trois peuvent être dégénérées : le H-système linéarisé autour d’une bulle peut admettre des solutions qui ne soient pas tangentes à la famille lisse des bulles. Nous donnons de plus une caractérisation algébrique complète des bulles dégénérées.

We consider entire solutions ωH˙1(R2;R3) of the H-system

Δω=2ωxωy

which we refer to as bubbles. Surprisingly, and contrary to conjectures raised in the literature, we find that bubbles with degree at least three can be degenerate: the linearized H-system around a bubble can admit solutions that are not tangent to the smooth family of bubbles. We then give a complete algebraic characterization of degenerate bubbles.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.731
Classification : 35J47, 53A10
Keywords: H-system, harmonic maps, conformal maps
Mots-clés : H-système, applications harmoniques, applications conformes

André Guerra 1 ; Xavier Lamy 2 ; Konstantinos Zemas 3

1 Institute for Theoretical Studies, ETH Zürich, CLV, Clausiusstrasse 47, 8006 Zürich, Switzerland
2 Institut de Mathématiques de Toulouse, Université Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse Cedex 8, France
3 Institute for Applied Mathematics, University of Bonn, Endenicher Allee 60, 53115 Bonn, Germany
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G3_271_0,
     author = {Andr\'e  Guerra and Xavier Lamy and Konstantinos Zemas},
     title = {On the existence of degenerate solutions of the two-dimensional $H$-system},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {271--281},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.731},
     language = {en},
}
TY  - JOUR
AU  - André  Guerra
AU  - Xavier Lamy
AU  - Konstantinos Zemas
TI  - On the existence of degenerate solutions of the two-dimensional $H$-system
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 271
EP  - 281
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.731
LA  - en
ID  - CRMATH_2025__363_G3_271_0
ER  - 
%0 Journal Article
%A André  Guerra
%A Xavier Lamy
%A Konstantinos Zemas
%T On the existence of degenerate solutions of the two-dimensional $H$-system
%J Comptes Rendus. Mathématique
%D 2025
%P 271-281
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.731
%G en
%F CRMATH_2025__363_G3_271_0
André  Guerra; Xavier Lamy; Konstantinos Zemas. On the existence of degenerate solutions of the two-dimensional $H$-system. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 271-281. doi : 10.5802/crmath.731. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.731/

[1] Haïm R. Brezis; Jean-Michel Coron Convergence of solutions of H-systems or how to blow bubbles, Arch. Ration. Mech. Anal., Volume 89 (1985) no. 1, pp. 21-56 | DOI | MR | Zbl

[2] Paolo Caldiroli; Roberta Musina H-bubbles in a perturbative setting: the finite-dimensional reduction method, Duke Math. J., Volume 122 (2004) no. 3, pp. 457-484 | DOI | MR | Zbl

[3] Paolo Caldiroli; Roberta Musina Existence of H-bubbles in a perturbative setting, Rev. Mat. Iberoam., Volume 20 (2004) no. 2, pp. 611-626 | DOI | MR | Zbl

[4] Paolo Caldiroli; Roberta Musina The Dirichlet problem for H-systems with small boundary data: blowup phenomena and nonexistence results, Arch. Ration. Mech. Anal., Volume 181 (2006) no. 1, pp. 1-42 | DOI | MR | Zbl

[5] Sagun Chanillo; Andrea Malchiodi Asymptotic Morse theory for the equation Δv-2vxvy, Commun. Anal. Geom., Volume 13 (2005) no. 1, pp. 187-251 | DOI | MR | Zbl

[6] Marcos Dajczer; Detlef Gromoll Gauss parametrizations and rigidity aspects of submanifolds, J. Differ. Geom., Volume 22 (1985) no. 1, pp. 1-12 | DOI | MR | Zbl

[7] Norio Ejiri Minimal deformation of a non-full minimal surface in S4(1), Compos. Math., Volume 90 (1994) no. 2, pp. 183-209 | Numdam | MR | Zbl

[8] Norio Ejiri The boundary of the space of full harmonic maps of S2 into S2m(1) and extra eigenfunctions, Jpn. J. Math., New Ser., Volume 24 (1998) no. 1, pp. 83-121 | DOI | MR | Zbl

[9] Norio Ejiri; Motoko Kotani Minimal surfaces in S2m(1) with extra eigenfunctions, Q. J. Math., Oxf. II. Ser., Volume 43 (1992) no. 172, pp. 421-440 | DOI | MR | Zbl

[10] Norio Ejiri; Motoko Kotani Index and flat ends of minimal surfaces, Tokyo J. Math., Volume 16 (1993) no. 1, pp. 37-48 | DOI | MR | Zbl

[11] Rupert L. Frank Degenerate stability of some Sobolev inequalities, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 39 (2023) no. 6, pp. 1459-1484 | DOI | MR | Zbl

[12] Rupert L. Frank; Jonas W. Peteranderl Degenerate stability of the Caffarelli–Kohn–Nirenberg inequality along the Felli–Schneider curve, Calc. Var. Partial Differ. Equ., Volume 63 (2024) no. 2, 44, 33 pages | DOI | MR | Zbl

[13] Robert Gulliver; Brian White The rate of convergence of a harmonic map at a singular point, Math. Ann., Volume 283 (1989) no. 4, pp. 539-549 | DOI | MR | Zbl

[14] Takeshi Isobe On the asymptotic analysis of H-systems. I. Asymptotic behavior of large solutions, Adv. Differ. Equ., Volume 6 (2001) no. 5, pp. 513-546 | DOI | MR | Zbl

[15] Takeshi Isobe On the asymptotic analysis of H-systems. II. The construction of large solutions, Adv. Differ. Equ., Volume 6 (2001) no. 6, pp. 641-700 | DOI | MR | Zbl

[16] Motoko Kotani Harmonic 2-spheres with r pairs of extra eigenfunctions, Proc. Am. Math. Soc., Volume 125 (1997) no. 7, pp. 2083-2092 | DOI | MR | Zbl

[17] Luc Lemaire; John C. Wood Jacobi fields along harmonic 2-spheres in 3- and 4-spheres are not all integrable, Tôhoku Math. J., Volume 61 (2009) no. 2, pp. 165-204 | DOI | MR | Zbl

[18] Andrea Malchiodi; Melanie Rupflin; Ben Sharp Łojasiewicz inequalities near simple bubble trees, Am. J. Math., Volume 146 (2024) no. 5, pp. 1361-1397 | DOI | MR | Zbl

[19] Sebastián Montiel; Antonio Ros Schrödinger operators associated to a holomorphic map, Global differential geometry and global analysis (Berlin, 1990) (Lecture Notes in Mathematics), Volume 1481, Springer, 1991, pp. 147-174 | DOI | MR | Zbl

[20] Roberta Musina The role of the spectrum of the Laplace operator on 𝕊2 in the bubble problem, J. Anal. Math., Volume 94 (2004), pp. 265-291 | DOI | MR | Zbl

[21] Shin Nayatani Morse index and Gauss maps of complete minimal surfaces in Euclidean 3- space, Comment. Math. Helv., Volume 68 (1993) no. 4, pp. 511-537 | DOI | MR | Zbl

[22] Leon Simon Theorems on regularity and singularity of energy minimizing maps. Based on lecture notes by Norbert Hungerbühler, Lectures in Mathematics, ETH Zürich, Birkhäuser, 1996, viii+152 pages | DOI | MR | Zbl

[23] Yannick Sire; Juncheng Wei; Youquan Zheng; Yifu Zhou Finite-time singularity formation for the heat flow of the H-system (2023) | arXiv

[24] Michael Struwe Large H-surfaces via the mountain-pass-lemma, Math. Ann., Volume 270 (1985), pp. 441-459 | DOI | MR | Zbl

[25] Michael Struwe Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 34, Springer, 2008, xx+302 pages | MR | Zbl

[26] Henry C Wente An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl., Volume 26 (1969) no. 2, pp. 318-344 | DOI | Zbl

Cité par Sources :

Commentaires - Politique