[Applications polaires toriques, croisements normaux et volumes mixtes]
Given a hypersurface in a complex projective space, we prove that the Chern–Schwartz–MacPherson class of a certain open set, namely the complement of the union of the hypersurface and the coordinate hyperplanes, is given (up to sign) by the multidegrees of associated toric polar map, in two particular cases: normal crossings with the coordinate hyperplanes and a nondegeneracy condition with respect to the Newton polytope. In the latter case, we also recover the multidegrees from mixed volumes.
Étant donné une hypersurface dans un espace projectif complexe, nous prouvons que la classe de Chern–Schwartz–MacPherson d’un certain ensemble ouvert, à savoir le complément de l’union de l’hypersurface et des hyperplans coordonnés, est donnée (à un signe près) par les multidegrés de l’application polaire torique associée, dans deux cas particuliers : les croisements normaux avec les hyperplans coordonnés et une condition de non dégénérescence par rapport au polytope de Newton. Dans ce dernier cas, nous récupérons également les multidegrés à partir de volumes mixtes.
Révisé le :
Accepté le :
Publié le :
Thiago Fassarella 1 ; Nivaldo Medeiros 1 ; Rodrigo Salomão 1

@article{CRMATH_2025__363_G5_511_0, author = {Thiago Fassarella and Nivaldo Medeiros and Rodrigo Salom\~ao}, title = {Toric polar maps, normal crossings and mixed volumes}, journal = {Comptes Rendus. Math\'ematique}, pages = {511--522}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.734}, language = {en}, }
TY - JOUR AU - Thiago Fassarella AU - Nivaldo Medeiros AU - Rodrigo Salomão TI - Toric polar maps, normal crossings and mixed volumes JO - Comptes Rendus. Mathématique PY - 2025 SP - 511 EP - 522 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.734 LA - en ID - CRMATH_2025__363_G5_511_0 ER -
Thiago Fassarella; Nivaldo Medeiros; Rodrigo Salomão. Toric polar maps, normal crossings and mixed volumes. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 511-522. doi : 10.5802/crmath.734. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.734/
[1] MacPherson’s and Fulton’s Chern classes of hypersurfaces, Int. Math. Res. Not., Volume 1994 (1994) no. 11, pp. 455-465 | DOI | MR | Zbl
[2] Chern classes for singular hypersurfaces, Trans. Am. Math. Soc., Volume 351 (1999) no. 10, pp. 3989-4026 | DOI | MR | Zbl
[3] Differential forms with logarithmic poles and Chern–Schwartz–MacPherson classes of singular varieties, C. R. Math., Volume 329 (1999) no. 7, pp. 619-624 | DOI | MR | Zbl
[4] Computing characteristic classes of projective schemes, J. Symb. Comput., Volume 35 (2003) no. 1, pp. 3-19 | DOI | MR | Zbl
[5] Characteristic classes of singular varieties, Topics in cohomological studies of algebraic varieties (Trends in Mathematics), Birkhäuser, 2005, pp. 1-32 | DOI | MR | Zbl
[6] The Chern–Schwartz–MacPherson class of an embeddable scheme, Forum Math. Sigma, Volume 7 (2019), e30, 28 pages | DOI | MR | Zbl
[7] Positivity of Segre–MacPherson classes, Facets of algebraic geometry. Vol. I (London Mathematical Society Lecture Note Series), Cambridge University Press, 2022 no. 472, pp. 1-28 | MR | Zbl
[8] Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells, Duke Math. J., Volume 172 (2023) no. 17, pp. 3257-3320 | DOI | MR | Zbl
[9] An introduction to characteristic classes. 33
[10] Characteristic classes, Handbook of geometry and topology of singularities III, Springer, 2022, pp. 303-417 | DOI | MR | Zbl
[11] Using algebraic geometry, Graduate Texts in Mathematics, 185, Springer, 1998, xii+499 pages | DOI | MR
[12] Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | DOI | MR
[13] Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. Math. (2), Volume 158 (2003) no. 2, pp. 473-507 | DOI | MR | Zbl
[14] Polar Cremona transformations, Mich. Math. J., Volume 48 (2000), pp. 191-202 | DOI | MR | Zbl
[15] On the signed Euler characteristic property for subvarieties of abelian varieties, J. Singul., Volume 17 (2018), pp. 368-387 | DOI | MR | Zbl
[16] Monomial Cremona transformations and toric polar maps, Commun. Algebra, Volume 51 (2023) no. 5, pp. 1900-1906 | DOI | MR | Zbl
[17] Toric polar maps and characteristic classes, Eur. J. Math., Volume 10 (2024) no. 4, 66, 25 pages | DOI | MR | Zbl
[18] Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1984, xi+470 pages | DOI | MR
[19] Introduction to toric varieties. The 1989 William H. Roever lectures in geometry, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages | DOI | MR | Zbl
[20] Linear precision for parametric patches, Adv. Comput. Math., Volume 33 (2010) no. 2, pp. 191-214 | DOI | MR | Zbl
[21] On characteristic classes of determinantal Cremona transformations, Math. Ann., Volume 335 (2006) no. 2, pp. 479-487 | DOI | MR | Zbl
[22] Macaulay2, a software system for research in algebraic geometry http://www2.macaulay2.com
[23] Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Am. Math. Soc., Volume 25 (2012) no. 3, pp. 907-927 | DOI | MR | Zbl
[24] The maximum likelihood degree of a very affine variety, Compos. Math., Volume 149 (2013) no. 8, pp. 1245-1266 | DOI | MR | Zbl
[25] A resolution of singularities of a toric variety and a non-degenerate hypersurface, Singularities in geometry and topology, World Scientific, 2007, pp. 354-369 | DOI | MR | Zbl
[26] Computing characteristic classes and the topological Euler characteristic of complex projective schemes, J. Softw. Algebra Geom., Volume 7 (2015), pp. 31-39 | DOI | MR | Zbl
[27] A characterization of
[28] Newton polyhedra, and toroidal varieties, Funkts. Anal. Prilozh., Volume 11 (1977) no. 4, pp. 56-64 | MR
Cité par Sources :
Commentaires - Politique