Comptes Rendus
Article de recherche - Analyse et géométrie complexes, Géométrie algébrique
Toric polar maps, normal crossings and mixed volumes
[Applications polaires toriques, croisements normaux et volumes mixtes]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 511-522.

Given a hypersurface in a complex projective space, we prove that the Chern–Schwartz–MacPherson class of a certain open set, namely the complement of the union of the hypersurface and the coordinate hyperplanes, is given (up to sign) by the multidegrees of associated toric polar map, in two particular cases: normal crossings with the coordinate hyperplanes and a nondegeneracy condition with respect to the Newton polytope. In the latter case, we also recover the multidegrees from mixed volumes.

Étant donné une hypersurface dans un espace projectif complexe, nous prouvons que la classe de Chern–Schwartz–MacPherson d’un certain ensemble ouvert, à savoir le complément de l’union de l’hypersurface et des hyperplans coordonnés, est donnée (à un signe près) par les multidegrés de l’application polaire torique associée, dans deux cas particuliers : les croisements normaux avec les hyperplans coordonnés et une condition de non dégénérescence par rapport au polytope de Newton. Dans ce dernier cas, nous récupérons également les multidegrés à partir de volumes mixtes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.734

Thiago Fassarella 1 ; Nivaldo Medeiros 1 ; Rodrigo Salomão 1

1 Universidade Federal Fluminense, Instituto de Matemática e Estatística, rua Alexandre Moura 8, São Domingos, 24210-200 Niterói RJ, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G5_511_0,
     author = {Thiago Fassarella and Nivaldo Medeiros and Rodrigo Salom\~ao},
     title = {Toric polar maps, normal crossings and mixed volumes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {511--522},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.734},
     language = {en},
}
TY  - JOUR
AU  - Thiago Fassarella
AU  - Nivaldo Medeiros
AU  - Rodrigo Salomão
TI  - Toric polar maps, normal crossings and mixed volumes
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 511
EP  - 522
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.734
LA  - en
ID  - CRMATH_2025__363_G5_511_0
ER  - 
%0 Journal Article
%A Thiago Fassarella
%A Nivaldo Medeiros
%A Rodrigo Salomão
%T Toric polar maps, normal crossings and mixed volumes
%J Comptes Rendus. Mathématique
%D 2025
%P 511-522
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.734
%G en
%F CRMATH_2025__363_G5_511_0
Thiago Fassarella; Nivaldo Medeiros; Rodrigo Salomão. Toric polar maps, normal crossings and mixed volumes. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 511-522. doi : 10.5802/crmath.734. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.734/

[1] Paolo Aluffi MacPherson’s and Fulton’s Chern classes of hypersurfaces, Int. Math. Res. Not., Volume 1994 (1994) no. 11, pp. 455-465 | DOI | MR | Zbl

[2] Paolo Aluffi Chern classes for singular hypersurfaces, Trans. Am. Math. Soc., Volume 351 (1999) no. 10, pp. 3989-4026 | DOI | MR | Zbl

[3] Paolo Aluffi Differential forms with logarithmic poles and Chern–Schwartz–MacPherson classes of singular varieties, C. R. Math., Volume 329 (1999) no. 7, pp. 619-624 | DOI | MR | Zbl

[4] Paolo Aluffi Computing characteristic classes of projective schemes, J. Symb. Comput., Volume 35 (2003) no. 1, pp. 3-19 | DOI | MR | Zbl

[5] Paolo Aluffi Characteristic classes of singular varieties, Topics in cohomological studies of algebraic varieties (Trends in Mathematics), Birkhäuser, 2005, pp. 1-32 | DOI | MR | Zbl

[6] Paolo Aluffi The Chern–Schwartz–MacPherson class of an embeddable scheme, Forum Math. Sigma, Volume 7 (2019), e30, 28 pages | DOI | MR | Zbl

[7] Paolo Aluffi; Leonardo C. Mihalcea; Jörg Schürmann; Changjian Su Positivity of Segre–MacPherson classes, Facets of algebraic geometry. Vol. I (London Mathematical Society Lecture Note Series), Cambridge University Press, 2022 no. 472, pp. 1-28 | MR | Zbl

[8] Paolo Aluffi; Leonardo C. Mihalcea; Jörg Schürmann; Changjian Su Shadows of characteristic cycles, Verma modules, and positivity of Chern–Schwartz–MacPherson classes of Schubert cells, Duke Math. J., Volume 172 (2023) no. 17, pp. 3257-3320 | DOI | MR | Zbl

[9] Jean-Paul Brasselet An introduction to characteristic classes. 33 Colóquio Brasileiro de Matemática, Publicações Matemáticas do IMPA, IMPA – Instituto de Matemática Pura e Aplicada, 2021, 123 pages | MR

[10] Jean-Paul Brasselet Characteristic classes, Handbook of geometry and topology of singularities III, Springer, 2022, pp. 303-417 | DOI | MR | Zbl

[11] David A. Cox; John B. Little; Donal O’Shea Using algebraic geometry, Graduate Texts in Mathematics, 185, Springer, 1998, xii+499 pages | DOI | MR

[12] David A. Cox; John B. Little; Henry K. Schenck Toric varieties, Graduate Studies in Mathematics, 124, American Mathematical Society, 2011, xxiv+841 pages | DOI | MR

[13] Alexandru Dimca; Stefan Papadima Hypersurface complements, Milnor fibers and higher homotopy groups of arrangments, Ann. Math. (2), Volume 158 (2003) no. 2, pp. 473-507 | DOI | MR | Zbl

[14] Igor V. Dolgachev Polar Cremona transformations, Mich. Math. J., Volume 48 (2000), pp. 191-202 | DOI | MR | Zbl

[15] Eva Elduque; Christian Geske; Laurentiu Maxim On the signed Euler characteristic property for subvarieties of abelian varieties, J. Singul., Volume 17 (2018), pp. 368-387 | DOI | MR | Zbl

[16] Thiago Fassarella; Nivaldo Medeiros Monomial Cremona transformations and toric polar maps, Commun. Algebra, Volume 51 (2023) no. 5, pp. 1900-1906 | DOI | MR | Zbl

[17] Thiago Fassarella; Nivaldo Medeiros; Rodrigo Salomão Toric polar maps and characteristic classes, Eur. J. Math., Volume 10 (2024) no. 4, 66, 25 pages | DOI | MR | Zbl

[18] William Fulton Intersection theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 2, Springer, 1984, xi+470 pages | DOI | MR

[19] William Fulton Introduction to toric varieties. The 1989 William H. Roever lectures in geometry, Annals of Mathematics Studies, 131, Princeton University Press, 1993, xii+157 pages | DOI | MR | Zbl

[20] Luis David Garcia-Puente; Frank Sottile Linear precision for parametric patches, Adv. Comput. Math., Volume 33 (2010) no. 2, pp. 191-214 | DOI | MR | Zbl

[21] Gerard Gonzalez-Sprinberg; Ivan Pan On characteristic classes of determinantal Cremona transformations, Math. Ann., Volume 335 (2006) no. 2, pp. 479-487 | DOI | MR | Zbl

[22] R. Grayson; E. Stillman Macaulay2, a software system for research in algebraic geometry http://www2.macaulay2.com

[23] June Huh Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, J. Am. Math. Soc., Volume 25 (2012) no. 3, pp. 907-927 | DOI | MR | Zbl

[24] June Huh The maximum likelihood degree of a very affine variety, Compos. Math., Volume 149 (2013) no. 8, pp. 1245-1266 | DOI | MR | Zbl

[25] Shihoko Ishii A resolution of singularities of a toric variety and a non-degenerate hypersurface, Singularities in geometry and topology, World Scientific, 2007, pp. 354-369 | DOI | MR | Zbl

[26] Christine Jost Computing characteristic classes and the topological Euler characteristic of complex projective schemes, J. Softw. Algebra Geom., Volume 7 (2015), pp. 31-39 | DOI | MR | Zbl

[27] Mikhail M. Kapranov A characterization of A-discriminantal hypersurfaces in terms of the logarithmic Gauss map, Math. Ann., Volume 290 (1991) no. 2, pp. 277-285 | DOI | MR | Zbl

[28] Askold Georgievich Khovanskii Newton polyhedra, and toroidal varieties, Funkts. Anal. Prilozh., Volume 11 (1977) no. 4, pp. 56-64 | MR

Cité par Sources :

Commentaires - Politique