We prove that for each , there exist a ruled variety of dimension and a connected algebraic subgroup of which is not contained in a maximal one.
Révisé le :
Accepté le :
Publié le :
Pascal Fong 1 ; Sokratis Zikas 1
@article{CRMATH_2023__361_G1_313_0, author = {Pascal Fong and Sokratis Zikas}, title = {Connected algebraic subgroups of groups of birational transformations not contained in a maximal one}, journal = {Comptes Rendus. Math\'ematique}, pages = {313--322}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.406}, language = {en}, }
TY - JOUR AU - Pascal Fong AU - Sokratis Zikas TI - Connected algebraic subgroups of groups of birational transformations not contained in a maximal one JO - Comptes Rendus. Mathématique PY - 2023 SP - 313 EP - 322 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.406 LA - en ID - CRMATH_2023__361_G1_313_0 ER -
%0 Journal Article %A Pascal Fong %A Sokratis Zikas %T Connected algebraic subgroups of groups of birational transformations not contained in a maximal one %J Comptes Rendus. Mathématique %D 2023 %P 313-322 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.406 %G en %F CRMATH_2023__361_G1_313_0
Pascal Fong; Sokratis Zikas. Connected algebraic subgroups of groups of birational transformations not contained in a maximal one. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 313-322. doi : 10.5802/crmath.406. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.406/
[1] Sous-groupes algébriques du groupe de Cremona, Transform. Groups, Volume 14 (2009) no. 2, pp. 249-285 | DOI | MR | Zbl
[2] Automorphisms of -bundles over rational surfaces (2021) | arXiv
[3] Connected Algebraic Groups Acting on three-dimensional Mori Fibrations, Int. Math. Res. Not. (2021), rnab293 | DOI
[4] Quotients of higher-dimensional Cremona groups, Acta Math., Volume 226 (2021) no. 2, pp. 211-318 | DOI | MR | Zbl
[5] Algebraic group actions on normal varieties, Trans. Mosc. Math. Soc., Volume 78 (2017), pp. 85-107 | DOI | MR | Zbl
[6] Lectures on the structure of algebraic groups and geometric applications, CMI Lecture Series in Mathematics, 1, Hindustan Book Agency; Chennai Mathematical Institute, 2013, viii+120 pages | DOI | MR
[7] Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I (Progress in Mathematics), Volume 269, Birkhäuser, 2009, pp. 443-548 | DOI | MR | Zbl
[8] Sui gruppi continui di trasformazioni cremoniane nel piano, Rom. Acc. L. Rend. (5), Volume 2 (1893) no. 1, pp. 468-473 | Zbl
[9] A note on the -Sarkisov program, Enseign. Math., Volume 66 (2020) no. 1-2, pp. 83-92 | DOI | MR | Zbl
[10] Algebraic subgroups of the group of birational transformations of ruled surfaces, 2021 | arXiv
[11] Connected algebraic groups acting on algebraic surfaces, 2021 | arXiv
[12] On Shokurov’s rational connectedness conjecture, Duke Math. J., Volume 138 (2007) no. 1, pp. 119-136 | DOI | MR | Zbl
[13] The Sarkisov program, J. Algebr. Geom., Volume 22 (2013) no. 2, pp. 389-405 | DOI | MR | Zbl
[14] Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | DOI | MR
[15] Lectures on resolution of singularities, Annals of Mathematics Studies, 166, Princeton University Press, 2007, vi+208 pages | MR
[16] Birational geometry of algebraic varieties, Cambridge Tracts in Mathematics, 134, Cambridge University Press, 1998, viii+254 pages (With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original) | DOI | MR
[17] Regularization of Rational Group Actions (2018) | arXiv
[18] Desingularization of two-dimensional schemes, Ann. Math., Volume 107 (1978) no. 1, pp. 151-207 | DOI | MR | Zbl
[19] On classification of ruled surfaces, Lectures in Mathematics, Department of Mathematics, Kyoto University, 3, Kinokuniya Book-Store Co., 1970, iv+75 pages | MR
[20] On automorphism groups of ruled surfaces, J. Math. Kyoto Univ., Volume 11 (1971), pp. 89-112 | DOI | MR | Zbl
[21] Sur les sous-groupes algébriques primitifs du groupe de Cremona à trois variables, Nagoya Math. J., Volume 79 (1980), pp. 47-67 | DOI | MR | Zbl
[22] Maximal algebraic subgroups of the Cremona group of three variables. Imprimitive algebraic subgroups of exceptional type, Nagoya Math. J., Volume 87 (1982), pp. 59-78 | DOI | MR | Zbl
[23] On the maximal connected algebraic subgroups of the Cremona group. I, Nagoya Math. J., Volume 88 (1982), pp. 213-246 | DOI | MR | Zbl
[24] On the maximal connected algebraic subgroups of the Cremona group. II, Algebraic groups and related topics (Kyoto/Nagoya, 1983) (Advanced Studies in Pure Mathematics), Volume 6, North-Holland, 1985, pp. 349-436 | DOI | MR | Zbl
[25] On algebraic groups of transformations, Am. J. Math., Volume 77 (1955), pp. 355-391 | DOI | MR | Zbl
[26] Regularization of birational group operations in the sense of Weil, J. Lie Theory, Volume 5 (1995) no. 2, pp. 207-224 | MR | Zbl
Cité par Sources :
Commentaires - Politique