[La grassmannienne affine comme quotient de préfaisceaux]
For a reductive group
Pour un groupe réductif
Révisé le :
Accepté le :
Publié le :
Keywords: Affine Grassmannian, loop group, reductive group, torsor
Mots-clés : Grassmannienne affine, groupe de lacets, groupe réductif, torseur
Kęstutis Česnavičius 1

@article{CRMATH_2025__363_G5_523_0, author = {K\k{e}stutis \v{C}esnavi\v{c}ius}, title = {The affine {Grassmannian} as a presheaf quotient}, journal = {Comptes Rendus. Math\'ematique}, pages = {523--532}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.736}, language = {en}, }
Kęstutis Česnavičius. The affine Grassmannian as a presheaf quotient. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 523-532. doi : 10.5802/crmath.736. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.736/
[1] Schémas en groupes (SGA 3). Tome III. Structure des schémas en groupes réductifs (Philippe Gille; Patrick Polo, eds.), Documents Mathématiques, 8, Société Mathématique de France, 2011, lvi+337 pages
[2] Affine Grassmannians in
[3] Quantization of Hitchin’s integrable system and Hecke eigensheaves (Online at https://math.uchicago.edu/~drinfeld/langlands/QuantizationHitchin.pdf)
[4] Algebraization and Tannaka duality, Camb. J. Math., Volume 4 (2016) no. 4, pp. 403-461 | DOI | MR | Zbl
[5] Tannaka duality revisited, Adv. Math., Volume 316 (2017), pp. 576-612 | DOI | MR | Zbl
[6] Torsors on loop groups and the Hitchin fibration, Ann. Sci. Éc. Norm. Supér., Volume 55 (2022) no. 3, pp. 791-864 | DOI | MR | Zbl
[7] Grothendieck–Serre in the quasi-split unramified case, Forum Math. Pi, Volume 10 (2022), e9, 30 pages | DOI | MR | Zbl
[8] Problems About Torsors over Regular Rings, Acta Math. Vietnam., Volume 47 (2022) no. 1, pp. 39-107 | DOI | MR | Zbl
[9] Unramified Grothendieck–Serre for isotropic groups (2023) | arXiv
[10] The analytic topology suffices for the
[11] Motivic integration, Progress in Mathematics, 325, Birkhäuser, 2018, xx+526 pages | DOI | MR
[12] On the Grothendieck–Serre conjecture about principal bundles and its generalizations, Algebra Number Theory, Volume 16 (2022) no. 2, pp. 447-465 | DOI | MR | Zbl
[13] Residues on affine Grassmannians, J. Reine Angew. Math., Volume 776 (2021), pp. 119-150 | DOI | MR | Zbl
[14] Éléments de géométrie algébrique. I. Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci. (1960) no. 4, 228 pages | MR
[15] Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas IV, Publ. Math., Inst. Hautes Étud. Sci. (1967) no. 32, 361 pages | Zbl
[16] On the Gille theorem for the relative projective line: I (2023) | arXiv
[17] On the Gille theorem for the relative projective line (2024) | arXiv
[18] Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008) no. 1, pp. 118-198 | DOI | MR | Zbl
[19] Critères de platitude et de projectivité. Techniques de « platification » d’un module, Invent. Math., Volume 13 (1971), pp. 1-89 | DOI | MR | Zbl
[20] Stacks Project http://stacks.math.columbia.edu
Cité par Sources :
Commentaires - Politique