Comptes Rendus
Article de recherche - Équations aux dérivées partielles
On gelation for the Smoluchowski coagulation equation
[Sur la gélification pour l’équation de coagulation de Smoluchowski]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 583-591.

Motivated by the recent results of Andreis–Iyer–Magnanini [2], we provide a short proof, revisiting the one of Escobedo–Mischler–Perthame [7], that for a large class of coagulation kernels, any weak solution to the Smoluchowski equation loses mass in finite time. The class of kernels we consider is essentially the same as the one of [2]: homogeneous kernels of degree γ>1 not vanishing on the diagonal, or homogeneous kernels of degree γ=1 not vanishing on the diagonal with some additional logarithmic factor. We also show that when γ=1, the power of the logarithmic factor ensuring gelation may depend on the shape of the kernel.

Motivés par les résultats récents d’Andreis–Iyer–Magnanini [2], nous fournissons une courte preuve, revisitant celle d’Escobedo–Mischler–Perthame [7], que pour une grande classe de noyaux de coagulation, toute solution faible de l’équation de Smoluchowski perd de la masse en temps fini. La classe de noyaux que nous considérons est essentiellement la même que celle de [2] : les noyaux homogènes de degré γ>1 ne s’annulant pas sur la diagonale, et les noyaux homogènes de degré γ=1 ne s’annulant pas sur la diagonale avec un facteur logarithmique supplémentaire. Nous montrons également que lorsque γ=1, la puissance du facteur logarithmique assurant la gélification peut dépendre de la forme du noyau.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.738
Classification : 45K05, 45M99
Keywords: Coagulation, Smoluchowski equation, gelation, explosion
Mots-clés : Coagulation, équation de Smoluchowski, gélification, explosion

Nicolas Fournier 1

1 Sorbonne Université, LPSM-UMR 8001, Case courrier 158, 75252 Paris Cedex 05, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G6_583_0,
     author = {Nicolas Fournier},
     title = {On gelation for the {Smoluchowski} coagulation equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {583--591},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     year = {2025},
     doi = {10.5802/crmath.738},
     language = {en},
}
TY  - JOUR
AU  - Nicolas Fournier
TI  - On gelation for the Smoluchowski coagulation equation
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 583
EP  - 591
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.738
LA  - en
ID  - CRMATH_2025__363_G6_583_0
ER  - 
%0 Journal Article
%A Nicolas Fournier
%T On gelation for the Smoluchowski coagulation equation
%J Comptes Rendus. Mathématique
%D 2025
%P 583-591
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.738
%G en
%F CRMATH_2025__363_G6_583_0
Nicolas Fournier. On gelation for the Smoluchowski coagulation equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 583-591. doi : 10.5802/crmath.738. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.738/

[1] David J. Aldous Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli, Volume 5 (1999) no. 1, pp. 3-48 | DOI | MR | Zbl

[2] Luisa Andreis; Tejas Iyer; Elena Magnanini Gelation in cluster coagulation processes (2023) (To appear in Ann. Inst. Henri Poincaré, Probab. Stat.) | arXiv

[3] Jacek Banasiak; Wilson Lamb; Philippe Laurençot Analytic methods for coagulation-fragmentation models. Vol. I, Monographs and Research Notes in Mathematics, CRC Press, 2020, xviii+353 pages | MR

[4] Jacek Banasiak; Wilson Lamb; Philippe Laurençot Analytic methods for coagulation-fragmentation models. Vol. II, Monographs and Research Notes in Mathematics, CRC Press, 2020, p. vii-xvi and 355–675 | MR | Zbl

[5] Emmanuel Buffet; Joseph V. Pulé Gelation: the diagonal case revisited, Nonlinearity, Volume 2 (1989) no. 2, pp. 373-381 | DOI | MR | Zbl

[6] P. G. J. van Dongen; Matthieu H. Ernst Scaling solutions of Smoluchowski’s coagulation equation, J. Stat. Phys., Volume 50 (1988) no. 1-2, pp. 295-329 | DOI | MR | Zbl

[7] Miguel Escobedo; Stéphane Mischler; Benoît Perthame Gelation in coagulation and fragmentation models, Commun. Math. Phys., Volume 231 (2002) no. 1, pp. 157-188 | DOI | MR | Zbl

[8] Nicolas Fournier; Philippe Laurençot Marcus-Lushnikov processes, Smoluchowski’s and Flory’s models, Stochastic Processes Appl., Volume 119 (2009) no. 1, pp. 167-189 | DOI | MR | Zbl

[9] E. M. Hendriks; Matthieu H. Ernst; Robert M. Ziff Coagulation equations with gelation, J. Stat. Phys., Volume 31 (1983) no. 3, pp. 519-563 | DOI | MR

[10] Michael Herrmann; Barbara Niethammer; Juan J. L. Velázquez Instabilities and oscillations in coagulation equations with kernels of homogeneity one, Q. Appl. Math., Volume 75 (2017) no. 1, pp. 105-130 | DOI | MR | Zbl

[11] Intae Jeon Existence of gelling solutions for coagulation-fragmentation equations, Commun. Math. Phys., Volume 194 (1998) no. 3, pp. 541-567 | DOI | MR | Zbl

[12] Philippe Laurençot Weak compactness techniques and coagulation equations, Evolutionary equations with applications in natural sciences (Lecture Notes in Mathematics), Volume 2126, Springer, 2015, pp. 199-253 | DOI | MR | Zbl

[13] François Leyvraz Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A. Math. Gen., Volume 16 (1983) no. 12, pp. 2861-2873 | DOI | MR

[14] François Leyvraz; Hans Rudolf Tschudi Critical kinetics near gelation, J. Phys. A. Math. Gen., Volume 15 (1982) no. 6, pp. 1951-1964 | DOI | MR

[15] James R. Norris Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., Volume 9 (1999) no. 1, pp. 78-109 | MR | Zbl

[16] James R. Norris Cluster coagulation, Commun. Math. Phys., Volume 209 (2000) no. 2, pp. 407-435 | DOI | MR | Zbl

[17] Marian Smoluchowski Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Zeit., Volume 17 (1916), pp. 557-599

[18] Robert M. Ziff Kinetics of polymerization, J. Stat. Phys., Volume 23 (1980) no. 2, pp. 241-263 | DOI | MR

Cité par Sources :

Commentaires - Politique