[Sur la gélification pour l’équation de coagulation de Smoluchowski]
Motivated by the recent results of Andreis–Iyer–Magnanini [2], we provide a short proof, revisiting the one of Escobedo–Mischler–Perthame [7], that for a large class of coagulation kernels, any weak solution to the Smoluchowski equation loses mass in finite time. The class of kernels we consider is essentially the same as the one of [2]: homogeneous kernels of degree
Motivés par les résultats récents d’Andreis–Iyer–Magnanini [2], nous fournissons une courte preuve, revisitant celle d’Escobedo–Mischler–Perthame [7], que pour une grande classe de noyaux de coagulation, toute solution faible de l’équation de Smoluchowski perd de la masse en temps fini. La classe de noyaux que nous considérons est essentiellement la même que celle de [2] : les noyaux homogènes de degré
Accepté le :
Publié le :
Keywords: Coagulation, Smoluchowski equation, gelation, explosion
Mots-clés : Coagulation, équation de Smoluchowski, gélification, explosion
Nicolas Fournier 1

@article{CRMATH_2025__363_G6_583_0, author = {Nicolas Fournier}, title = {On gelation for the {Smoluchowski} coagulation equation}, journal = {Comptes Rendus. Math\'ematique}, pages = {583--591}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.738}, language = {en}, }
Nicolas Fournier. On gelation for the Smoluchowski coagulation equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 583-591. doi : 10.5802/crmath.738. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.738/
[1] Deterministic and stochastic models for coalescence (aggregation and coagulation): a review of the mean-field theory for probabilists, Bernoulli, Volume 5 (1999) no. 1, pp. 3-48 | DOI | MR | Zbl
[2] Gelation in cluster coagulation processes (2023) (To appear in Ann. Inst. Henri Poincaré, Probab. Stat.) | arXiv
[3] Analytic methods for coagulation-fragmentation models. Vol. I, Monographs and Research Notes in Mathematics, CRC Press, 2020, xviii+353 pages | MR
[4] Analytic methods for coagulation-fragmentation models. Vol. II, Monographs and Research Notes in Mathematics, CRC Press, 2020, p. vii-xvi and 355–675 | MR | Zbl
[5] Gelation: the diagonal case revisited, Nonlinearity, Volume 2 (1989) no. 2, pp. 373-381 | DOI | MR | Zbl
[6] Scaling solutions of Smoluchowski’s coagulation equation, J. Stat. Phys., Volume 50 (1988) no. 1-2, pp. 295-329 | DOI | MR | Zbl
[7] Gelation in coagulation and fragmentation models, Commun. Math. Phys., Volume 231 (2002) no. 1, pp. 157-188 | DOI | MR | Zbl
[8] Marcus-Lushnikov processes, Smoluchowski’s and Flory’s models, Stochastic Processes Appl., Volume 119 (2009) no. 1, pp. 167-189 | DOI | MR | Zbl
[9] Coagulation equations with gelation, J. Stat. Phys., Volume 31 (1983) no. 3, pp. 519-563 | DOI | MR
[10] Instabilities and oscillations in coagulation equations with kernels of homogeneity one, Q. Appl. Math., Volume 75 (2017) no. 1, pp. 105-130 | DOI | MR | Zbl
[11] Existence of gelling solutions for coagulation-fragmentation equations, Commun. Math. Phys., Volume 194 (1998) no. 3, pp. 541-567 | DOI | MR | Zbl
[12] Weak compactness techniques and coagulation equations, Evolutionary equations with applications in natural sciences (Lecture Notes in Mathematics), Volume 2126, Springer, 2015, pp. 199-253 | DOI | MR | Zbl
[13] Existence and properties of post-gel solutions for the kinetic equations of coagulation, J. Phys. A. Math. Gen., Volume 16 (1983) no. 12, pp. 2861-2873 | DOI | MR
[14] Critical kinetics near gelation, J. Phys. A. Math. Gen., Volume 15 (1982) no. 6, pp. 1951-1964 | DOI | MR
[15] Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent, Ann. Appl. Probab., Volume 9 (1999) no. 1, pp. 78-109 | MR | Zbl
[16] Cluster coagulation, Commun. Math. Phys., Volume 209 (2000) no. 2, pp. 407-435 | DOI | MR | Zbl
[17] Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Phys. Zeit., Volume 17 (1916), pp. 557-599
[18] Kinetics of polymerization, J. Stat. Phys., Volume 23 (1980) no. 2, pp. 241-263 | DOI | MR
Cité par Sources :
Commentaires - Politique