[Optimalité asymptotique pour l’approximation par éléments finis de Nédélec des équations de Maxwell en régime harmonique]
We analyze the conforming approximation of the time-harmonic Maxwell’s equations using Nédélec (edge) finite elements. We prove that the approximation is asymptotically optimal, i.e., the approximation error in the energy norm is bounded by the best-approximation error times a constant that tends to one as the mesh is refined and/or the polynomial degree is increased. Moreover, under the same conditions on the mesh and/or the polynomial degree, we establish discrete inf-sup stability with a constant that corresponds to the continuous constant up to a factor of two at most. Our proofs apply under minimal regularity assumptions on the exact solution, so that general domains, material coefficients, and right-hand sides are allowed.
On analyse l’approximation conforme des équations de Maxwell en régime harmonique par des éléments finis de Nédélec. On montre l’optimalité asymptotique de l’approximation, i.e., l’erreur d’approximation en norme d’énergie est bornée par l’erreur de la meilleure approximation multipliée par une constante qui tend vers un quand le pas du maillage tend vers zéro ou le degré polynomial tend vers l’infini. De plus, sous ces mêmes hypothèses sur le maillage et le degré polynomial, on établit une condition de stabilité inf-sup avec une constante qui vaut au plus deux fois la valeur de la constante de stabilité du problème continu. Les preuves s’appliquent sous des hypothèses de régularité minimale sur la solution, ce qui permet de considérer une large classe de domaines, propriétés matériaux et termes sources.
Révisé le :
Accepté le :
Publié le :
Keywords: Electromagnetics, finite element methods, Maxwell’s equations, duality argument, asymptotic optimality
Mots-clés : Électromagnétisme, méthodes d’éléments finis, équations de Maxwell, argument de dualité, optimalité asymptotique
Théophile Chaumont-Frelet 1 ; Alexandre Ern 2, 3
CC-BY 4.0
@article{CRMATH_2025__363_G11_1083_0,
author = {Th\'eophile Chaumont-Frelet and Alexandre Ern},
title = {Asymptotic optimality of the edge finite element approximation of the time-harmonic {Maxwell{\textquoteright}s} equations},
journal = {Comptes Rendus. Math\'ematique},
pages = {1083--1101},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.757},
language = {en},
}
TY - JOUR AU - Théophile Chaumont-Frelet AU - Alexandre Ern TI - Asymptotic optimality of the edge finite element approximation of the time-harmonic Maxwell’s equations JO - Comptes Rendus. Mathématique PY - 2025 SP - 1083 EP - 1101 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.757 LA - en ID - CRMATH_2025__363_G11_1083_0 ER -
%0 Journal Article %A Théophile Chaumont-Frelet %A Alexandre Ern %T Asymptotic optimality of the edge finite element approximation of the time-harmonic Maxwell’s equations %J Comptes Rendus. Mathématique %D 2025 %P 1083-1101 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.757 %G en %F CRMATH_2025__363_G11_1083_0
Théophile Chaumont-Frelet; Alexandre Ern. Asymptotic optimality of the edge finite element approximation of the time-harmonic Maxwell’s equations. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1083-1101. doi: 10.5802/crmath.757
[1] Vector potentials in three-dimensional non-smooth domains, Math. Methods Appl. Sci., Volume 21 (1998) no. 9, pp. 823-864 | MR | Zbl | DOI
[2] Finite element exterior calculus, homological techniques, and applications, Acta Numer., Volume 15 (2006), pp. 1-155 | DOI | MR | Zbl
[3] -theory of the Maxwell operator in arbitrary domains, Usp. Mat. Nauk, Volume 42 (1987) no. 6(258), p. 61-76, 247 | MR | Zbl
[4] Discrete compactness for the -version of discrete differential forms, SIAM J. Numer. Anal., Volume 49 (2011) no. 1, pp. 135-158 | DOI | Zbl
[5] Regularity of the Maxwell equations in heterogeneous media and Lipschitz domains, J. Math. Anal. Appl., Volume 408 (2013) no. 259, pp. 498-512 | DOI | MR | Zbl
[6] An interior penalty method with finite elements for the approximation of the Maxwell equations in heterogeneous media: convergence analysis with minimal regularity, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 5, pp. 1457-1489 | DOI | MR | Numdam | Zbl
[7] Remarks on the discretization of some noncoercive operator with applications to heterogeneous Maxwell equations, SIAM J. Numer. Anal., Volume 43 (2005) no. 1, pp. 1-18 | DOI | MR | Zbl
[8] Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements, Numer. Math., Volume 113 (2009) no. 4, pp. 497-518 | DOI | MR | Zbl
[9] On the convergence of Galerkin finite element approximations of electromagnetic eigenproblems, SIAM J. Numer. Anal., Volume 38 (2000) no. 2, pp. 580-607 | DOI | MR | Zbl
[10] Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, IMA J. Numer. Anal., Volume 40 (2020) no. 2, pp. 1503-1543 | DOI | MR | Zbl
[11] Finite element approximation of electromagnetic fields using nonfitting meshes for geophysics, SIAM J. Numer. Anal., Volume 56 (2018) no. 4, pp. 2288-2321 | DOI | MR | Zbl
[12] Frequency-explicit approximability estimates for time-harmonic Maxwell’s equations, Calcolo, Volume 59 (2022) no. 2, 22, 15 pages | DOI | MR | Zbl
[13] Discrete Fredholm properties and convergence estimates for the electric field integral equation, Math. Comput., Volume 73 (2004) no. 245, pp. 143-167 | DOI | MR | Zbl
[14] Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numer. Math., Volume 107 (2007) no. 1, pp. 87-106 | DOI | MR | Zbl
[15] Smoothed projections in finite element exterior calculus, Math. Comput., Volume 77 (2008) no. 262, pp. 813-829 | DOI | MR | Zbl
[16] A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains, Math. Methods Appl. Sci., Volume 12 (1990) no. 4, pp. 365-368 | DOI | Zbl
[17] A coercive bilinear form for Maxwell’s equations, J. Math. Anal. Appl., Volume 157 (1991) no. 2, pp. 527-541 | DOI | Zbl
[18] Weighted regularization of Maxwell equations in polyhedral domains. A rehabilitation of nodal finite elements, Numer. Math., Volume 93 (2002) no. 2, pp. 239-277 | DOI | MR | Zbl
[19] Singularities of Maxwell interface problems, ESAIM, Math. Model. Numer. Anal., Volume 33 (1999) no. 3, pp. 627-649 | Numdam | Zbl | DOI
[20] , and -conforming projection-based interpolation in three dimensions. Quasi-optimal -interpolation estimates, Comput. Methods Appl. Mech. Eng., Volume 194 (2005), pp. 267-296 | MR | Zbl
[21] Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions, Comput. Math. Appl., Volume 75 (2018) no. 3, pp. 918-932 | DOI | MR | Zbl
[22] Finite elements I—Approximation and interpolation, Texts in Applied Mathematics, 72, Springer, 2021, xii+325 pages | DOI | MR | Zbl
[23] Finite elements. II—Galerkin approximation, elliptic and mixed PDEs, Texts in Applied Mathematics, 73, Springer, 2021, 492 pages | DOI | MR | Zbl
[24] Incompressible finite element methods for Navier–Stokes equations with nonstandard boundary conditions in , Math. Comput., Volume 51 (1988) no. 183, pp. 55-74 | DOI | MR | Zbl
[25] Finite elements in computational electromagnetism, Acta Numer., Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl
[26] Regularity of weak solutions of Maxwell’s equations with mixed boundary-conditions, Math. Methods Appl. Sci., Volume 22 (1999) no. 14, pp. 1255-1274 | DOI | MR | Zbl
[27] On a discrete compactness property for the Nédélec finite elements, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 36 (1989) no. 3, pp. 479-490 | MR | Zbl
[28] Wavenumber-explicit convergence of the -FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients, Comput. Math. Appl., Volume 113 (2022), pp. 59-69 | DOI | MR | Zbl
[29] On commuting -version projection-based interpolation on tetrahedra, Math. Comput., Volume 89 (2020) no. 321, pp. 45-87 | DOI | MR | Zbl
[30] Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions, Math. Comput., Volume 79 (2010) no. 272, pp. 1871-1914 | DOI | MR | Zbl
[31] Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation, SIAM J. Numer. Anal., Volume 49 (2011) no. 3, pp. 1210-1243 | DOI | MR | Zbl
[32] Wavenumber-explicit -FEM analysis for Maxwell’s equations with transparent boundary conditions, Found. Comput. Math., Volume 21 (2021) no. 1, pp. 125-241 | DOI | MR | Zbl
[33] Wavenumber-explicit -FEM analysis for Maxwell’s equations with impedance boundary conditions, Found. Comput. Math., Volume 24 (2024) no. 6, pp. 1871-1939 | DOI | MR | Zbl
[34] A finite element method for approximating the time-harmonic Maxwell equations, Numer. Math., Volume 63 (1992) no. 2, pp. 243-261 | DOI | MR | Zbl
[35] Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, 2003, xiv+450 pages | DOI | MR | Zbl
[36] Discrete compactness and the approximation of Maxwell’s equations in , Math. Comput., Volume 70 (2001) no. 234, pp. 507-523 | DOI | MR | Zbl
[37] Mixed finite elements in , Numer. Math., Volume 35 (1980) no. 3, pp. 315-341 | DOI | Zbl
[38] A new family of mixed finite elements in , Numer. Math., Volume 50 (1986), pp. 57-81 | DOI | MR | Zbl
[39] An observation concerning Ritz–Galerkin methods with indefinite bilinear forms, Math. Comput., Volume 28 (1974), pp. 959-962 | DOI | MR | Zbl
[40] Commuting quasi-interpolation operators for mixed finite elements, Report ISC-01-10-MATH, Texas A&M University, 2001 https://isc.tamu.edu/...
[41] A local compactness theorem for Maxwell’s equations, Math. Methods Appl. Sci., Volume 2 (1980) no. 1, pp. 12-25 | DOI | Zbl
[42] Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations, J. Comput. Math., Volume 27 (2009) no. 5, pp. 563-572 | MR | Zbl
Cité par Sources :
Commentaires - Politique
