[Tout réseau récurrent a un potentiel tendant vers l’infini]
A rooted network consists of a connected, locally finite graph
Un réseau enraciné est un graphe
Révisé le :
Accepté le :
Publié le :
Asaf Nachmias 1 ; Yuval Peres 2

@article{CRMATH_2025__363_G8_793_0, author = {Asaf Nachmias and Yuval Peres}, title = {Every recurrent network has a potential tending to infinity}, journal = {Comptes Rendus. Math\'ematique}, pages = {793--798}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.758}, language = {en}, }
Asaf Nachmias; Yuval Peres. Every recurrent network has a potential tending to infinity. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 793-798. doi : 10.5802/crmath.758. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.758/
[1] Harnack inequality and one-endedness of UST on reversible random graphs, Probab. Theory Relat. Fields, Volume 188 (2024) no. 1-2, pp. 487-548 | DOI | MR | Zbl
[2] The number of ends in the uniform spanning tree for recurrent unimodular random graphs, Ann. Probab., Volume 52 (2024) no. 6, pp. 2079-2103 | DOI | MR | Zbl
[3] Potentials and positively infinite singularities of harmonic functions, Monatsh. Math. Phys., Volume 43 (1936) no. 1, pp. 419-424 | DOI | MR | Zbl
[4] On Evans potential, Proc. Japan Acad., Volume 38 (1962), pp. 624-629 | Zbl
[5] On general minimax theorems, Pac. J. Math., Volume 8 (1958), pp. 171-176 | DOI | Zbl
[6] Principles of random walk, Graduate Texts in Mathematics, 34, Springer, 1976, xiii+408 pages | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique