[Cyclicité des opérateurs de composition sur les espaces de Paley–Wiener]
In this article we characterize the cyclicity of bounded composition operators $C_\phi f=f\circ \phi $ on the Paley–Wiener spaces of entire functions $B^2_\sigma $ for $\sigma >0$. We show that $C_\phi $ is cyclic precisely when $\phi (z)=z+b$ where either $b\in \mathbb{C}\setminus \mathbb{R}$ or $b\in \mathbb{R}$ with $0<\vert b \vert \le \pi /\sigma $. We also describe when the reproducing kernels of $B^2_\sigma $ are cyclic vectors for $C_\phi $ and see that this is related to a question of completeness of exponential sequences in $L^2[-\sigma ,\sigma ]$. The interplay between cyclicity and complex symmetry plays a key role in this work.
Dans cet article, nous caractérisons la cyclicité des opérateurs de composition bornée $C_\phi f=f\circ \phi $ sur les espaces de Paley–Wiener des fonctions entières $B^2_\sigma $ pour $\sigma >0$. Nous montrons que $C_\phi $ est cyclique précisément lorsque $\phi (z)=z+b$ où $b\in \mathbb{C}\setminus \mathbb{R}$ ou $b\in \mathbb{R}$ avec $0<\vert b \vert \le \pi /\sigma $. Nous décrivons également lorsque les noyaux reproducteurs de $B^2_\sigma $ sont des vecteurs cycliques pour $C_\phi $ et voyons que cela est lié à une question de complétude des suites exponentielles dans $L^2[-\sigma ,\sigma ]$. L’interaction entre cyclicité et symétrie complexe joue un rôle clé dans ce travail.
Accepté le :
Publié le :
Mots-clés : Opérateur cyclique, opérateur de composition, espace Paley–Wiener
Pham Viet Hai 1 ; Waleed Noor 2 ; Osmar Reis Severiano 2
CC-BY 4.0
@article{CRMATH_2025__363_G9_879_0,
author = {Pham Viet Hai and Waleed Noor and Osmar Reis Severiano},
title = {Cyclicity of composition operators on the {Paley{\textendash}Wiener} spaces},
journal = {Comptes Rendus. Math\'ematique},
pages = {879--886},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.765},
language = {en},
}
TY - JOUR AU - Pham Viet Hai AU - Waleed Noor AU - Osmar Reis Severiano TI - Cyclicity of composition operators on the Paley–Wiener spaces JO - Comptes Rendus. Mathématique PY - 2025 SP - 879 EP - 886 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.765 LA - en ID - CRMATH_2025__363_G9_879_0 ER -
Pham Viet Hai; Waleed Noor; Osmar Reis Severiano. Cyclicity of composition operators on the Paley–Wiener spaces. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 879-886. doi: 10.5802/crmath.765
[1] Dynamics of linear operators, Cambridge Tracts in Mathematics, 179, Cambridge University Press, 2009, xiv+337 pages | DOI | MR | Zbl
[2] Cyclicity of composition operators on the Fock space, J. Oper. Theory, Volume 92 (2024) no. 2, pp. 549-577 | MR | Zbl
[3] Hilbert spaces of entire functions, Prentice Hall Series in Modern Analysis, Prentice Hall, 1968, ix+326 pages | MR | Zbl
[4] Composition operators on spaces of entire functions, Proc. Am. Math. Soc., Volume 135 (2007) no. 7, pp. 2205-2218 | DOI | MR | Zbl
[5] The role of the spectrum in the cyclic behavior of composition operators, Memoirs of the American Mathematical Society, 167, American Mathematical Society, 2004 no. 791, x+81 pages | DOI | MR | Zbl
[6] Complex symmetric operators and applications, Trans. Am. Math. Soc., Volume 358 (2006) no. 3, pp. 1285-1315 | DOI | MR | Zbl
[7] Complex symmetric operators and applications. II, Trans. Am. Math. Soc., Volume 359 (2007) no. 8, pp. 3913-3931 | DOI | MR | Zbl
[8] Complex symmetric partial isometries, J. Funct. Anal., Volume 257 (2009) no. 4, pp. 1251-1260 | DOI | MR | Zbl
[9] Some new classes of complex symmetric operators, Trans. Am. Math. Soc., Volume 362 (2010) no. 11, pp. 6065-6077 | DOI | MR | Zbl
[10] Linear chaos, Universitext, Springer, 2011, xii+386 pages | DOI | MR | Zbl
[11] Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J., Volume 23 (1973-74), pp. 557-565 | DOI | MR | Zbl
[12] Boundedness of composition operators on reproducing kernel Hilbert spaces with analytic positive definite functions, J. Math. Anal. Appl., Volume 511 (2022) no. 1, 126048, 30 pages | DOI | MR | Zbl
[13] Operators, functions, and systems: an easy reading. Vol. 2, Mathematical Surveys and Monographs, 93, American Mathematical Society, 2002, xiv+439 pages | MR | Zbl
[14] Common cyclic vectors for normal operators, Indiana Univ. Math. J., Volume 53 (2004) no. 6, pp. 1537-1550 | DOI | MR | Zbl
[15] Complex symmetry and cyclicity of composition operators on , Proc. Am. Math. Soc., Volume 148 (2020) no. 6, pp. 2469-2476 | DOI | MR | Zbl
[16] An introduction to nonharmonic Fourier series, Academic Press Inc., 2001, xiv+234 pages | MR | Zbl
Cité par Sources :
Commentaires - Politique
