[Plans d’expérience D-optimaux et mesure d’équilibre]
We introduce a minor variant of the approximate D-optimal design of experiments with a more general information matrix that takes into account the representation of the design space
Nous introduisons une variante mineure du plan d’expériences approché D-optimal avec une matrice d’information plus générale qui tient compte de la représentation de l’espace de conception
Révisé le :
Accepté le :
Publié le :
Didier Henrion 1, 2, 3 ; Jean-Bernard Lasserre 1, 3

@article{CRMATH_2025__363_G8_739_0, author = {Didier Henrion and Jean-Bernard Lasserre}, title = {Approximate {D-optimal} design and equilibrium measure}, journal = {Comptes Rendus. Math\'ematique}, pages = {739--756}, publisher = {Acad\'emie des sciences, Paris}, volume = {363}, year = {2025}, doi = {10.5802/crmath.766}, language = {en}, }
Didier Henrion; Jean-Bernard Lasserre. Approximate D-optimal design and equilibrium measure. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 739-756. doi : 10.5802/crmath.766. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.766/
[1] Complex equilibrium measure and Bernstein type theorems for compact sets in
[2] The complex equilibrium measure of a symmetric convex set in
[3] Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math., Volume 207 (2011) no. 1, pp. 1-27 | DOI | MR | Zbl
[4] On the convergence of optimal measures, Constr. Approx., Volume 32 (2010) no. 1, pp. 159-179 | DOI | MR | Zbl
[5] Some remarks on the Fejér problem for Lagrange interpolation in several variables, J. Approx. Theory, Volume 60 (1990) no. 2, pp. 133-140 | DOI | MR | Zbl
[6] On Fekete points for a real simplex, Indag. Math., New Ser., Volume 34 (2023) no. 2, pp. 274-293 | DOI | MR | Zbl
[7] An encyclopaedia of cubature formulas, J. Complexity, Volume 19 (2003) no. 3, pp. 445-453 | DOI | MR | Zbl
[8] Algorithm 824: CUBPACK: A package for automatic cubature; framework description, ACM Trans. Math. Softw., Volume 29 (2003) no. 3, pp. 287-296 | DOI | Zbl
[9] Approximate optimal designs for multivariate polynomial regression, Ann. Stat., Volume 47 (2019) no. 1, pp. 127-155 | DOI | MR | Zbl
[10] Dual optimal design and the Christoffel–Darboux polynomial, Optim. Lett., Volume 15 (2021) no. 1, pp. 3-8 | DOI | MR | Zbl
[11] Orthogonal polynomials: applications and computation, Acta numerica, 1996 (Acta Numerica), Cambridge University Press, 1996 no. 5, pp. 45-119 | DOI | MR | Zbl
[12] Constructing cubature formulae for spheres and balls, J. Comput. Appl. Math., Volume 112 (1999) no. 1-2, pp. 95-119 | DOI | MR | Zbl
[13] Efficiency problems in polynomial estimation, Ann. Math. Stat., Volume 29 (1958), pp. 1134-1145 | DOI | MR | Zbl
[14] Optimal spacing and weighting in polynomial prediction, Ann. Math. Stat., Volume 35 (1964), pp. 1553-1560 | DOI | MR | Zbl
[15] Optimal experimental design: formulations and computations, Acta Numer., Volume 33 (2024), pp. 715-840 | DOI | MR | Zbl
[16] Tchebycheff systems: with applications in analysis and statistics, Pure and Applied Mathematics, XV, Interscience Publishers, 1966, xviii+586 pages | MR | Zbl
[17] The equivalence of two extremum problems, Can. J. Math., Volume 12 (1960), pp. 363-366 | DOI | MR | Zbl
[18] Transfinite diameter, Chebyshev constant and capacity, Handbook of complex analysis: geometric function theory. Vol. 2, Elsevier, 2005, pp. 243-308 | DOI | MR | Zbl
[19] Pluripotential theory, London Mathematical Society Monographs. New Series, 6, Clarendon Press, 1991, xiv+266 pages | DOI | MR | Zbl
[20] Christoffel functions and universality in the bulk for multivariate orthogonal polynomials, Can. J. Math., Volume 65 (2013) no. 3, pp. 600-620 | DOI | MR | Zbl
[21] An introduction to polynomial and semi-algebraic optimization, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2015, xiv+339 pages | DOI | MR | Zbl
[22] Pell’s equation, sum-of-squares and equilibrium measures on a compact set, C. R. Math., Volume 361 (2023), pp. 935-952 | DOI | MR | Zbl
[23] The moment-SOS hierarchy: applications and related topics, Acta Numer., Volume 33 (2024), pp. 841-908 | DOI | MR | Zbl
[24] The empirical Christoffel function with applications in data analysis, Adv. Comput. Math., Volume 45 (2019) no. 3, pp. 1439-1468 | DOI | MR | Zbl
[25] The Christoffel–Darboux kernel for data analysis, Cambridge Monographs on Applied and Computational Mathematics, 38, Cambridge University Press, 2022, xv+168 pages | DOI | MR | Zbl
[26] A generalized Pell’s equation for a class of multivariate orthogonal polynomials, Trans. Am. Math. Soc., Volume 378 (2025) no. 8, pp. 5305-5328 | DOI
[27] Approximation in
[28] Logarithmic potentials with external fields, Grundlehren der Mathematischen Wissenschaften, 316, Springer, 1997, xvi+505 pages | DOI | MR | Zbl
[29] The moment problem, Graduate Texts in Mathematics, 277, Springer, 2017, xii+535 pages | DOI | MR | Zbl
[30] The Christoffel–Darboux kernel, Perspectives in partial differential equations, harmonic analysis and applications (Proceedings of Symposia in Pure Mathematics), American Mathematical Society, 2008 no. 79, pp. 295-335 | DOI | MR | Zbl
[31] Optimal designs on Tchebycheff points, Ann. Math. Stat., Volume 39 (1968), pp. 1435-1447 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique