[Équation de Pell, sommes de carrés et mesure d’équilibre d’ensembles compacts]
We first interpret Pell’s equation satisfied by Chebyshev polynomials for each degree
Nous fournissons d’abord une interprétation particulière de l’équation polynomiale de Pell satisfaite par les polynômes de Chebyshev. Pour chaque degré
Révisé le :
Accepté le :
Publié le :
Jean B. Lasserre 1

@article{CRMATH_2023__361_G5_935_0, author = {Jean B. Lasserre}, title = {Pell{\textquoteright}s equation, sum-of-squares and equilibrium measures on a compact set}, journal = {Comptes Rendus. Math\'ematique}, pages = {935--952}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.465}, language = {en}, }
Jean B. Lasserre. Pell’s equation, sum-of-squares and equilibrium measures on a compact set. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 935-952. doi : 10.5802/crmath.465. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.465/
[1] The complex equilibrium measure of a symmetric convex set in
[2] JuMP: A Modeling Language for Mathematical Optimization, SIAM Rev., Volume 59 (2017) no. 2, pp. 295-320 | DOI | Zbl
[3] CVX: Matlab Software for Disciplined Convex Programming, version 2.1, http://cvxr.com/cvx, 2014
[4] Introduction to Polynomial and Semi-Algebraic Optimization, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2015 | DOI | Zbl
[5] A disintegration of the Christoffel function, C. R. Math. Acad. Sci. Paris, Volume 360 (2022), pp. 1071-1079 | Zbl
[6] The Christoffel–Darboux Kernel for Data Analysis, Cambridge Monographs on Applied and Computational Mathematics, 38, Cambridge University Press, 2022 | DOI
[7] Multivariable-polynomial solutions to Pell’s equation and fundamental units in real quadratic fields, Pac. J. Math., Volume 210 (2002) no. 2, pp. 335-348 | DOI
[8] Squared functional systems and optimization problems, High Performance Optimization (Hans Frenk; Kees Roos; Tamás Terlaky; Shuzhong Zhang, eds.) (Applied Optimization), Volume 33, Springer, 2000, pp. 405-440 | DOI | Zbl
[9] Exploiting constant trace property in large scale polynomial optimization (2020) (https://arxiv.org/abs/2012.08873, to appear in ACM Trans. Math. Softw.)
[10] Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 969-984 | DOI | Zbl
[11] Polynomial Pell’s equation, Proc. Am. Math. Soc., Volume 131 (2003) no. 4, pp. 993-1006 | DOI | Zbl
- Chebyshev and equilibrium measure vs Bernstein and Lebesgue measure, Proceedings of the American Mathematical Society, Volume 153 (2025) no. 6, pp. 2451-2465 | DOI:10.1090/proc/16739 | Zbl:8027637
- The moment-SOS hierarchy: applications and related topics, Acta Numerica, Volume 33 (2024), pp. 841-908 | DOI:10.1017/s0962492923000053 | Zbl:1546.65043
- The Christoffel function: Applications, connections and extensions, Numerical Algebra, Control and Optimization, Volume 0 (2024) no. 0, p. 0 | DOI:10.3934/naco.2024011
- A modified Christoffel function and its asymptotic properties, Journal of Approximation Theory, Volume 295 (2023), p. 16 (Id/No 105955) | DOI:10.1016/j.jat.2023.105955 | Zbl:1534.41015
- Polynomial Optimization, Certificates of Positivity, and Christoffel Function, Polynomial Optimization, Moments, and Applications, Volume 206 (2023), p. 1 | DOI:10.1007/978-3-031-38659-6_1
Cité par 5 documents. Sources : Crossref, zbMATH
Commentaires - Politique