Étant donné une mesure de probabilité (multivariée)
Given a determinate (multivariate) probability measure
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.657
Keywords: Gaussian mixtures, Wasserstein distance, semidefinite relaxations, Moment-SOS hierarchy
Mots-clés : Mélanges de Gaussiennes, distance de Wasserstein, relaxations semidéfinies, hiérarchie moments-sommes-de-carrés
Jean B. Lasserre 1

@article{CRMATH_2024__362_G11_1455_0, author = {Jean B. Lasserre}, title = {Gaussian mixtures closest to a given measure via optimal transport}, journal = {Comptes Rendus. Math\'ematique}, pages = {1455--1473}, publisher = {Acad\'emie des sciences, Paris}, volume = {362}, year = {2024}, doi = {10.5802/crmath.657}, zbl = {07945488}, language = {en}, }
Jean B. Lasserre. Gaussian mixtures closest to a given measure via optimal transport. Comptes Rendus. Mathématique, Volume 362 (2024), pp. 1455-1473. doi : 10.5802/crmath.657. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.657/
[1] Moment varieties of Gaussian mixtures, J. Algebr. Stat., Volume 7 (2016) no. 1, pp. 14-28 | DOI | MR | Zbl
[2] Handbook on semidefinite, conic and polynomial optimization (Miguel F. Anjos; Jean B. Lasserre, eds.), International Series in Operations Research & Management Science, 166, Springer, 2012, xii+960 pages | DOI | MR | Zbl
[3] Algebraic identifiability of Gaussian mixtures, Int. Math. Res. Not., Volume 2018 (2018) no. 21, pp. 6556-6580 | DOI | MR | Zbl
[4] Estimation and inference for the Wasserstein distance between mixing measures in topic models (2023) (https://arxiv.org/abs/2206.12768)
[5] Robustly learning mixtures of
[6] Orthogonal polynomials of several variables, Encyclopedia of Mathematics and Its Applications, 81, Cambridge University Press, 2001, xvi+390 pages | DOI | MR | Zbl
[7] A mixture of mixture models for a classification problem: the unity measure error, Comput. Stat. Data Anal., Volume 51 (2007) no. 5, pp. 2573-2585 | DOI | MR | Zbl
[8] Strong identifiability and optimal minimax rates for finite mixture estimation, Ann. Stat., Volume 46 (2018) no. 6A, pp. 2844-2870 | DOI | MR | Zbl
[9] The moment-SOS hierarchy—lectures in probability, statistics, computational geometry, control and nonlinear PDEs, Series on Optimization and its Applications, 4, World Scientific, 2021, xvii+229 pages | MR | Zbl
[10] GloptiPoly 3: moments, optimization and semidefinite programming, Optim. Methods Softw., Volume 24 (2009) no. 4-5, pp. 761-779 | DOI | MR | Zbl
[11] Efficiently learning mixtures of two Gaussians, STOC’10—Proceedings of the 2010 ACM International Symposium on Theory of Computing, Association for Computing Machinery (2010), pp. 553-562 | DOI | MR | Zbl
[12] Polynomial-time sum-of-squares can robustly estimate mean and covariance of Gaussians optimally, Proceedings of The 33rd International Conference on Algorithmic Learning Theory (Sanjoy Dasgupta; Nika Haghtalab, eds.) (Proceedings of Machine Learning Research), Volume 167, PMLR (2022), pp. 638-667 | MR
[13] Moments, positive polynomials and their applications, Imperial College Press Optimization Series, 1, Imperial College Press, 2010, xxii+361 pages | MR | Zbl
[14] The existence of Gaussian cubature formulas, J. Approx. Theory, Volume 164 (2012) no. 5, pp. 572-585 | DOI | MR | Zbl
[15] An introduction to polynomial and semi-algebraic optimization, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2015, xiv+339 pages | DOI | MR | Zbl
[16] Moment matrices: applications in mixtures, Ann. Stat., Volume 17 (1989) no. 2, pp. 722-740 | DOI | MR | Zbl
[17] Finite mixture models, Wiley Ser. Probab. Math. Stat., John Wiley & Sons, 2000 | DOI | MR | Zbl
[18] Settling the polynomial learnability of mixtures of Gaussians, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science—FOCS 2010, IEEE Computer Society (2010), pp. 93-102 | DOI | MR
[19] Exact mean integrated squared error, Ann. Stat., Volume 20 (1992) no. 2, pp. 712-736 | DOI | MR | Zbl
[20] On square positive extensions and cubature formulas, J. Comput. Appl. Math., Volume 199 (2007) no. 1, pp. 80-88 | DOI | MR | Zbl
[21] Convergence of latent mixing measures in finite and infinite mixture models, Ann. Stat., Volume 41 (2013) no. 1, pp. 370-400 | DOI | MR | Zbl
[22] SOS is not obviously automatizable, even approximately, 8th Innovations in Theoretical Computer Science Conference (LIPIcs. Leibniz Int. Proc. Inform.), Volume 67, Schloss Dagstuhl. Leibniz-Zent. Inform., 2017 (No. 59, 10 pages) | DOI | MR | Zbl
[23] A study of Gaussian mixture models of color and texture features for image classification and segmentation, Pattern Recognition, Volume 39 (2006) no. 4, pp. 695-706 | DOI | Zbl
[24] Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J., Volume 42 (1993) no. 3, pp. 969-984 | DOI | MR | Zbl
[25] Generating daily changes in market variables using a multivariate mixture of normal distributions, Proceeding of the 2001 Winter Simulation Conference (Cat. No.01CH37304) (2001), pp. 283-289 | DOI
[26] Optimal estimation of Gaussian mixtures via denoised method of moments, Ann. Stat., Volume 48 (2020) no. 4, pp. 1981-2007 | DOI | MR | Zbl
[27] Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity, IEEE Trans. Image Process., Volume 21 (2012) no. 5, pp. 2481-2499 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique