Comptes Rendus
Article de recherche - Équations aux dérivées partielles
Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points
[Régularité uniforme et estimations de poids pour les problèmes de Poisson lors de l’arrondissement des points coniques]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1013-1023

We establish uniform solvability estimates for the Poisson problems associated to a suitably bounded family $\lbrace \Omega _{n}\rbrace _{n \in \mathfrak{I}}$ of domains in $\mathbb{R}^{d}$. The main example is that of a suitable sequence of smooth domains that “converges” to a domain with conical points by rounding off the conical points. We give full details for the case of a straight polygonal domain approximated by a sequence of smooth domains rounding off its corners. The method of proof relies on a conformal modification of the metric, with respect to which the union of our domains becomes a manifold with boundary and relative bounded geometry.

Nous établissons des estimées de résolubilité uniforme pour les problèmes de Poisson associés à une famille $\lbrace \Omega _{n}\rbrace _{n \in \mathfrak{I}}$ de domaines de $\mathbb{R}^{d}$ bornée de manière appropriée. L’exemple principal est celui d’une suite appropriée de domaines lisses qui « converge » vers un domaine à points coniques en arrondissant les points coniques. Nous donnons les détails complets dans le cas d’un domaine polygonal rectiligne approché par une suite de domaines lisses arrondissant ses angles. La méthode de la démonstration repose sur une modification conforme de la métrique, pour laquelle l’union de nos domaines devient une variété à bord à géométrie relativement bornée.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.770
Classification : 35R01, 35J15, 46E35, 58J32
Keywords: Strongly elliptic operators, Poincaré inequality, polygonal domain, Babuška–Kondratiev spaces, Sobolev spaces, manifolds with bounded geometry
Mots-clés : Opérateurs fortement elliptiques, inégalité de Poincaré, domaine polygonal, espaces de Babuška–Kondratiev, espaces de Sobolev, variétés à géométrie bornée

Benoît Daniel 1 ; Simon Labrunie 1 ; Victor Nistor 1

1 Université de Lorraine, CNRS, IECL, 54000 Nancy, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G10_1013_0,
     author = {Beno{\^\i}t Daniel and Simon Labrunie and Victor Nistor},
     title = {Uniform regularity and weight estimates for the {Poisson} problems when rounding off the conical points},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1013--1023},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.770},
     language = {en},
}
TY  - JOUR
AU  - Benoît Daniel
AU  - Simon Labrunie
AU  - Victor Nistor
TI  - Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1013
EP  - 1023
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.770
LA  - en
ID  - CRMATH_2025__363_G10_1013_0
ER  - 
%0 Journal Article
%A Benoît Daniel
%A Simon Labrunie
%A Victor Nistor
%T Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points
%J Comptes Rendus. Mathématique
%D 2025
%P 1013-1023
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.770
%G en
%F CRMATH_2025__363_G10_1013_0
Benoît Daniel; Simon Labrunie; Victor Nistor. Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1013-1023. doi: 10.5802/crmath.770

[1] Herbert Amann Function spaces on singular manifolds, Math. Nachr., Volume 286 (2013) no. 5-6, pp. 436-475 | Zbl | DOI | MR

[2] Herbert Amann Function spaces on uniformly regular and singular Riemannian manifolds (2025) (Preprint)

[3] Bernd Ammann; Nadine Große; Victor Nistor Analysis and boundary value problems on singular domains: an approach via bounded geometry, C. R. Math., Volume 357 (2019) no. 6, pp. 487-493 | DOI | MR | Numdam | Zbl

[4] Bernd Ammann; Nadine Große; Victor Nistor Well-posedness of the Laplacian on manifolds with boundary and bounded geometry, Math. Nachr., Volume 292 (2019) no. 6, pp. 1213-1237 | DOI | MR | Zbl

[5] Haim Brezis Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiv+599 pages | MR | Zbl | DOI

[6] Patrick Ciarlet; Samir Kaddouri Multiscaled asymptotic expansions for the electric potential: surface charge densities and electric fields at rounded corners, Math. Models Methods Appl. Sci., Volume 17 (2007) no. 6, pp. 845-876 | DOI | MR | Zbl

[7] Martin Costabel; Monique Dauge; Serge Nicaise Analytic regularity for linear elliptic systems in polygons and polyhedra, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 8, 1250015, 63 pages | DOI | MR | Zbl

[8] B. Daniel; S. Labrunie; Victor Nistor Uniform estimates for a family of Poisson problems: ‘rounding up the corners’ (2024) | arXiv | Zbl

[9] B. Daniel; S. Labrunie; Victor Nistor Uniform estimates for a family of Poisson problems: ‘rounding up the conical points’ (In final preparation)

[10] Nadine Große; Cornelia Schneider Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., Volume 286 (2013) no. 16, pp. 1586-1613 | DOI | MR | Zbl

[11] Antoine Henrot; Michel Pierre Shape variation and optimization, EMS Tracts in Mathematics, European Mathematical Society, 2018 no. 28, xi+365 pages | DOI | MR | Zbl

[12] Samir Kaddouri Résolution du problème du potentiel électrostatique dans des domaines prismatiques et axisymétriques singuliers. Étude asymptotique dans des domaines quasi-singuliers, Ph. D. Thesis, ENSTA (France) (2007)

[13] Mirela Kohr; Victor Nistor Sobolev spaces and -differential operators on manifolds I: basic properties and weighted spaces, Ann. Global Anal. Geom., Volume 61 (2022) no. 4, pp. 721-758 | DOI | MR | Zbl

[14] Vladimir Aleksandrovich Kondrat’ev Boundary value problems for elliptic equations in domains with conical or angular points, Transactions of the Moscow Mathematical Society for the year 1967 (Volume 16) (Transactions of the Moscow Mathematical Society), American Mathematical Society, 1967 no. 16, pp. 227-313 | MR | Zbl

[15] Vladimir Arkadʹevich Kozlov; Vladimir Gilelevich Maz’ya; Jürgen Rossmann Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical Surveys and Monographs, American Mathematical Society, 2001 no. 85, x+436 pages | DOI | MR | Zbl

[16] Jacques-Louis Lions; Enrico Magenes Non-homogeneous boundary value problems and applications. Vol. I, Grundlehren der Mathematischen Wissenschaften, Springer, 1972 no. 181, xvi+357 pages | MR

[17] Jacques-Louis Lions; Enrico Magenes Non-homogeneous boundary value problems and applications. Vol. II, Grundlehren der Mathematischen Wissenschaften, Springer, 1972 no. 182, xi+242 pages | MR | Zbl

[18] Thomas Schick Manifolds with boundary and of bounded geometry, Math. Nachr., Volume 223 (2001), pp. 103-120 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique