[Régularité uniforme et estimations de poids pour les problèmes de Poisson lors de l’arrondissement des points coniques]
We establish uniform solvability estimates for the Poisson problems associated to a suitably bounded family $\lbrace \Omega _{n}\rbrace _{n \in \mathfrak{I}}$ of domains in $\mathbb{R}^{d}$. The main example is that of a suitable sequence of smooth domains that “converges” to a domain with conical points by rounding off the conical points. We give full details for the case of a straight polygonal domain approximated by a sequence of smooth domains rounding off its corners. The method of proof relies on a conformal modification of the metric, with respect to which the union of our domains becomes a manifold with boundary and relative bounded geometry.
Nous établissons des estimées de résolubilité uniforme pour les problèmes de Poisson associés à une famille $\lbrace \Omega _{n}\rbrace _{n \in \mathfrak{I}}$ de domaines de $\mathbb{R}^{d}$ bornée de manière appropriée. L’exemple principal est celui d’une suite appropriée de domaines lisses qui « converge » vers un domaine à points coniques en arrondissant les points coniques. Nous donnons les détails complets dans le cas d’un domaine polygonal rectiligne approché par une suite de domaines lisses arrondissant ses angles. La méthode de la démonstration repose sur une modification conforme de la métrique, pour laquelle l’union de nos domaines devient une variété à bord à géométrie relativement bornée.
Révisé le :
Accepté le :
Publié le :
Keywords: Strongly elliptic operators, Poincaré inequality, polygonal domain, Babuška–Kondratiev spaces, Sobolev spaces, manifolds with bounded geometry
Mots-clés : Opérateurs fortement elliptiques, inégalité de Poincaré, domaine polygonal, espaces de Babuška–Kondratiev, espaces de Sobolev, variétés à géométrie bornée
Benoît Daniel 1 ; Simon Labrunie 1 ; Victor Nistor 1
CC-BY 4.0
@article{CRMATH_2025__363_G10_1013_0,
author = {Beno{\^\i}t Daniel and Simon Labrunie and Victor Nistor},
title = {Uniform regularity and weight estimates for the {Poisson} problems when rounding off the conical points},
journal = {Comptes Rendus. Math\'ematique},
pages = {1013--1023},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.770},
language = {en},
}
TY - JOUR AU - Benoît Daniel AU - Simon Labrunie AU - Victor Nistor TI - Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points JO - Comptes Rendus. Mathématique PY - 2025 SP - 1013 EP - 1023 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.770 LA - en ID - CRMATH_2025__363_G10_1013_0 ER -
%0 Journal Article %A Benoît Daniel %A Simon Labrunie %A Victor Nistor %T Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points %J Comptes Rendus. Mathématique %D 2025 %P 1013-1023 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.770 %G en %F CRMATH_2025__363_G10_1013_0
Benoît Daniel; Simon Labrunie; Victor Nistor. Uniform regularity and weight estimates for the Poisson problems when rounding off the conical points. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1013-1023. doi: 10.5802/crmath.770
[1] Function spaces on singular manifolds, Math. Nachr., Volume 286 (2013) no. 5-6, pp. 436-475 | Zbl | DOI | MR
[2] Function spaces on uniformly regular and singular Riemannian manifolds (2025) (Preprint)
[3] Analysis and boundary value problems on singular domains: an approach via bounded geometry, C. R. Math., Volume 357 (2019) no. 6, pp. 487-493 | DOI | MR | Numdam | Zbl
[4] Well-posedness of the Laplacian on manifolds with boundary and bounded geometry, Math. Nachr., Volume 292 (2019) no. 6, pp. 1213-1237 | DOI | MR | Zbl
[5] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011, xiv+599 pages | MR | Zbl | DOI
[6] Multiscaled asymptotic expansions for the electric potential: surface charge densities and electric fields at rounded corners, Math. Models Methods Appl. Sci., Volume 17 (2007) no. 6, pp. 845-876 | DOI | MR | Zbl
[7] Analytic regularity for linear elliptic systems in polygons and polyhedra, Math. Models Methods Appl. Sci., Volume 22 (2012) no. 8, 1250015, 63 pages | DOI | MR | Zbl
[8] Uniform estimates for a family of Poisson problems: ‘rounding up the corners’ (2024) | arXiv | Zbl
[9] Uniform estimates for a family of Poisson problems: ‘rounding up the conical points’ (In final preparation)
[10] Sobolev spaces on Riemannian manifolds with bounded geometry: general coordinates and traces, Math. Nachr., Volume 286 (2013) no. 16, pp. 1586-1613 | DOI | MR | Zbl
[11] Shape variation and optimization, EMS Tracts in Mathematics, European Mathematical Society, 2018 no. 28, xi+365 pages | DOI | MR | Zbl
[12] Résolution du problème du potentiel électrostatique dans des domaines prismatiques et axisymétriques singuliers. Étude asymptotique dans des domaines quasi-singuliers, Ph. D. Thesis, ENSTA (France) (2007)
[13] Sobolev spaces and -differential operators on manifolds I: basic properties and weighted spaces, Ann. Global Anal. Geom., Volume 61 (2022) no. 4, pp. 721-758 | DOI | MR | Zbl
[14] Boundary value problems for elliptic equations in domains with conical or angular points, Transactions of the Moscow Mathematical Society for the year 1967 (Volume 16) (Transactions of the Moscow Mathematical Society), American Mathematical Society, 1967 no. 16, pp. 227-313 | MR | Zbl
[15] Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical Surveys and Monographs, American Mathematical Society, 2001 no. 85, x+436 pages | DOI | MR | Zbl
[16] Non-homogeneous boundary value problems and applications. Vol. I, Grundlehren der Mathematischen Wissenschaften, Springer, 1972 no. 181, xvi+357 pages | MR
[17] Non-homogeneous boundary value problems and applications. Vol. II, Grundlehren der Mathematischen Wissenschaften, Springer, 1972 no. 182, xi+242 pages | MR | Zbl
[18] Manifolds with boundary and of bounded geometry, Math. Nachr., Volume 223 (2001), pp. 103-120 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
