Comptes Rendus
Article de recherche - Systèmes dynamiques, Théorie des groupes
Groups acting on the line with at most 2 fixed points: an extension of Solodov’s theorem
[Groupes agissant sur la droite avec au plus 2 points fixes : une extension du théorème de Solodov]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 951-958

A classical result by Solodov states that if a group acts on the line such that any non-trivial element has at most one fixed point, then the action is either abelian or semi-conjugate to an affine action. We show that the same holds if we relax the assumption, requiring that any non-trivial element has at most 2 fixed points.

Un résultat classique de Solodov stipule que si un groupe agit sur la droite de telle sorte que tout élément non trivial a au plus un point fixe, alors l’action est soit abélienne, soit semi-conjuguée à une action affine. Nous montrons qu’il en va de même si nous relâchons l’hypothèse, en exigeant que tout élément non trivial ait au plus deux points fixes.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.777
Classification : 37C85, 57M60, 37B05, 37E05
Keywords: Group actions on the line, affine actions, maps with at most 2 fixed points
Mots-clés : Actions de groupes sur la droite, actions affines, applications avec au plus 2 points fixes

João Carnevale 1

1 Instituto de Matemática, Departamento de Matemática, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Bloco C do Centro de Tecnologia, Térreo, Cidade Universitária, Rio de Janeiro, RJ 21941-909, Brazil
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G10_951_0,
     author = {Jo\~ao Carnevale},
     title = {Groups acting on the line with at most 2 fixed points: an extension of {Solodov{\textquoteright}s} theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {951--958},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.777},
     language = {en},
}
TY  - JOUR
AU  - João Carnevale
TI  - Groups acting on the line with at most 2 fixed points: an extension of Solodov’s theorem
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 951
EP  - 958
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.777
LA  - en
ID  - CRMATH_2025__363_G10_951_0
ER  - 
%0 Journal Article
%A João Carnevale
%T Groups acting on the line with at most 2 fixed points: an extension of Solodov’s theorem
%J Comptes Rendus. Mathématique
%D 2025
%P 951-958
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.777
%G en
%F CRMATH_2025__363_G10_951_0
João Carnevale. Groups acting on the line with at most 2 fixed points: an extension of Solodov’s theorem. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 951-958. doi: 10.5802/crmath.777

[1] Azer Akhmedov A weak Zassenhaus lemma for discrete subgroups of Diff(I), Algebr. Geom. Topol., Volume 14 (2014) no. 1, pp. 539-550 | DOI | MR | Zbl

[2] Azer Akhmedov Extension of Hölder’s theorem in Diff + 1+ϵ (I), Ergodic Theory Dyn. Syst., Volume 36 (2016) no. 5, pp. 1343-1353 | DOI | MR | Zbl

[3] Thierry Barbot Caractérisation des flots d’Anosov en dimension 3 par leurs feuilletages faibles, Ergodic Theory Dyn. Syst., Volume 15 (1995) no. 2, pp. 247-270 | DOI | MR | Zbl

[4] L. A. Beklaryan On analogs of the Tits alternative for groups of homeomorphisms of the circle and of the line, Math. Notes, Volume 71 (2002) no. 3, pp. 305-315 | DOI | MR | Zbl

[5] Christian Bonatti; Ignacio Monteverde; Andrés Navas; Cristóbal Rivas Rigidity for C 1 actions on the interval arising from hyperbolicity I: Solvable groups, Math. Z., Volume 286 (2017) no. 3-4, pp. 919-949 | DOI | MR | Zbl

[6] Paul Conrad Right-ordered groups, Mich. Math. J., Volume 6 (1959), pp. 267-275 | MR | Zbl

[7] B. Deroin; Andrés Navas; Cristóbal Rivas Groups, orders, and dynamics (2016) | arXiv | Zbl

[8] Benson Farb; John Franks Group actions on one-manifolds. II. Extensions of Hölder’s theorem, Trans. Am. Math. Soc., Volume 355 (2003) no. 11, pp. 4385-4396 | DOI | MR | Zbl

[9] É. Ghys Groups acting on the circle, Enseign. Math. (2), Volume 47 (2001) no. 3-4, pp. 329-407 | MR | Zbl

[10] O. Hölder Die Axiome der Quantität und die Lehre vom Mass, Ber. Verh. Sächs. Akad. Wiss. Leipzig Math.-Phys. Kl., Volume 53 (1901), pp. 1-64 | Zbl

[11] Sang-hyun Kim; Thomas Koberda; Mahan Mj Flexibility of group actions on the circle, Lecture Notes in Mathematics, 2231, Springer, 2019, x+134 pages | DOI | MR | Zbl

[12] N. Kovačević Möbius-like groups of homeomorphisms of the circle, Trans. Am. Math. Soc., Volume 351 (1999) no. 12, pp. 4791-4822 | MR | Zbl | DOI

[14] Joseph F. Plante Solvable groups acting on the line, Trans. Am. Math. Soc., Volume 278 (1983) no. 1, pp. 401-414 | DOI | MR | Zbl

[15] V. V. Solodov Topological problems in the theory of dynamical systems, Russ. Math. Surv., Volume 46 (1991) no. 4, pp. 107-134 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique