Comptes Rendus
Article de recherche - Combinatoire, Analyse harmonique
Spherical sets avoiding orthonormal bases
[Ensembles sphériques évitant des bases orthonormées]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1351-1362

We show that there exists an absolute constant $c_0<1$ such that for all $n \geqslant 2$, any measurable set $A \subset S^{n-1}$ of density at least $c_0$ contains $n$ pairwise orthogonal vectors. The result is sharp up to the value of the constant $c_0$. Moreover, we show that for all $2 \leqslant k \leqslant n$ a set $A$ avoiding $k$ pairwise orthogonal vectors has measure at most $\exp \bigl (-c_1 \min \bigl \lbrace \sqrt{n}, n/k\bigr \rbrace \bigr )$ for some $c_1>0$. Proofs rely on the harmonic analysis on the sphere and the hypercontractive inequality.

Nous montrons qu’il existe une constante absolue $c_0<1$ telle que pour tout $n \geqslant 2$, tout ensemble mesurable $A \subset S^{n-1}$ de densité au moins $c_0$ contient $n$ vecteurs orthogonaux deux à deux. Le résultat est optimal à la valeur de la constante $c_0$ près. De plus, nous montrons que pour tout $2 \leqslant k \leqslant n$ un ensemble $A$ évitant $k$ vecteurs orthogonaux deux à deux a une mesure au plus égale à $\exp \bigl (-c_1 \min \bigl \lbrace \sqrt{n}, n/k\bigr \rbrace \bigr )$ pour $c_1>0$. Les démonstrations reposent sur l’analyse harmonique sur la sphère et l’inégalité d’hypercontractivité.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.782
Classification : 52C10, 33C45

Dmitrii Zakharov 1

1 Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G12_1351_0,
     author = {Dmitrii Zakharov},
     title = {Spherical sets avoiding orthonormal bases},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1351--1362},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.782},
     language = {en},
}
TY  - JOUR
AU  - Dmitrii Zakharov
TI  - Spherical sets avoiding orthonormal bases
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 1351
EP  - 1362
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.782
LA  - en
ID  - CRMATH_2025__363_G12_1351_0
ER  - 
%0 Journal Article
%A Dmitrii Zakharov
%T Spherical sets avoiding orthonormal bases
%J Comptes Rendus. Mathématique
%D 2025
%P 1351-1362
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.782
%G en
%F CRMATH_2025__363_G12_1351_0
Dmitrii Zakharov. Spherical sets avoiding orthonormal bases. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1351-1362. doi: 10.5802/crmath.782

[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables (Milton Abramowitz; Irene A. Stegun, eds.), Dover Publications, 1992 | MR

[2] Noga Alon; Gregory Gutin; Michael Krivelevich Algorithms with large domination ratio, J. Algorithms, Volume 50 (2004) no. 1, pp. 118-131 | DOI | MR | Zbl

[3] Gergely Ambrus; Adrián Csiszárik; Máté Matolcsi; Dániel Varga; Pál Zsámboki The density of planar sets avoiding unit distances (2022) | arXiv

[4] Christine Bachoc; Alberto Passuello; Alain Thiery The density of sets avoiding distance 1 in Euclidean space, Discrete Comput. Geom., Volume 53 (2015) no. 4, pp. 783-808 | DOI | MR | Zbl

[5] William Beckner Inequalities in Fourier analysis, Ann. Math. (2), Volume 102 (1975) no. 1, pp. 159-182 | DOI | MR | Zbl

[6] Bram Bekker; Olga Kuryatnikova; Fernando Mário de Oliveira Filho; Juan C. Vera Optimization hierarchies for distance-avoiding sets in compact spaces (2023) | arXiv

[7] Aline Bonami Étude des coefficients de Fourier des fonctions de L p (G), Ann. Inst. Fourier, Volume 20 (1970) no. 2, pp. 335-402 | MR | Numdam

[8] Davi Castro-Silva Geometrical sets with forbidden configurations, Forum Math. Sigma, Volume 11 (2023), e44, 45 pages | DOI | MR | Zbl

[9] Davi Castro-Silva; Fernando Mário de Oliveira Filho; Lucas Slot; Frank Vallentin A recursive Lovász theta number for simplex-avoiding sets, Proc. Am. Math. Soc., Volume 150 (2022) no. 8, pp. 3307-3322 | DOI | MR | Zbl

[10] Feng Dai; Yuan Xu Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, 2013 | DOI | MR | Zbl

[11] Evan DeCorte; Fernando Mário de Oliveira Filho; Frank Vallentin Complete positivity and distance-avoiding sets, Math. Program., Volume 191 (2022) no. 2, pp. 487-558 | DOI | MR | Zbl

[12] P. Frankl; R. M. Wilson Intersection theorems with geometric consequences, Combinatorica, Volume 1 (1981) no. 4, pp. 357-368 | DOI | MR | Zbl

[13] Aubrey D. N. J. de Grey The chromatic number of the plane is at least 5, Geombinatorics, Volume 28 (2018) no. 1, pp. 18-31 | MR | Zbl

[14] Leonard Gross Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | Zbl | DOI | MR

[15] Gil Kalai How large can a spherical set without two orthogonal vectors be? https://gilkalai.wordpress.com/... (Accessed 2025-10-20)

[16] Peter Keevash; Noam Lifshitz; Eoin Long; Dor Minzer Forbidden intersections for codes (2021) | arXiv

[17] Nathan Keller; Noam Lifshitz; Omri Marcus Sharp hypercontractivity for global functions (2023) | arXiv | Zbl

[18] Nathan Keller; Noam Lifshitz; Dor Minzer; Ohad Sheinfeld On t-intersecting families of permutations (2023) | arXiv

[19] Bo’az Klartag; Oded Regev Quantum one-way communication is exponentially stronger than classical communication (2010) | arXiv

[20] Andrey Kupavskii; Arsenii Sagdeev; Dmitrii Zakharov Cutting corners (2022) arxiv:2211.17150 | Zbl

[21] Matthew Kwan; Ashwin Sah; Lisa Sauermann; Mehtaab Sawhney Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture, Forum Math. Pi, Volume 11 (2023), e21, 74 pages | DOI | MR | Zbl

[22] Ryan O’Donnell Analysis of Boolean functions, Cambridge University Press, 2014 | DOI | MR | Zbl

[23] Fernando Mário de Oliveira Filho; Frank Vallentin Fourier analysis, linear programming, and densities of distance avoiding sets in n , J. Eur. Math. Soc., Volume 12 (2010) no. 6, pp. 1417-1428 | DOI | MR | Zbl

[24] Andrei Mikhailovich Raigorodskii On the chromatic number of a space, Usp. Mat. Nauk, Volume 55 (2000) no. 2, pp. 147-148 | Zbl

[25] Andrei Mikhailovich Raigorodskii On the chromatic numbers of spheres in n , Combinatorica, Volume 32 (2012) no. 1, pp. 111-123 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique