[Ensembles sphériques évitant des bases orthonormées]
We show that there exists an absolute constant $c_0<1$ such that for all $n \geqslant 2$, any measurable set $A \subset S^{n-1}$ of density at least $c_0$ contains $n$ pairwise orthogonal vectors. The result is sharp up to the value of the constant $c_0$. Moreover, we show that for all $2 \leqslant k \leqslant n$ a set $A$ avoiding $k$ pairwise orthogonal vectors has measure at most $\exp \bigl (-c_1 \min \bigl \lbrace \sqrt{n}, n/k\bigr \rbrace \bigr )$ for some $c_1>0$. Proofs rely on the harmonic analysis on the sphere and the hypercontractive inequality.
Nous montrons qu’il existe une constante absolue $c_0<1$ telle que pour tout $n \geqslant 2$, tout ensemble mesurable $A \subset S^{n-1}$ de densité au moins $c_0$ contient $n$ vecteurs orthogonaux deux à deux. Le résultat est optimal à la valeur de la constante $c_0$ près. De plus, nous montrons que pour tout $2 \leqslant k \leqslant n$ un ensemble $A$ évitant $k$ vecteurs orthogonaux deux à deux a une mesure au plus égale à $\exp \bigl (-c_1 \min \bigl \lbrace \sqrt{n}, n/k\bigr \rbrace \bigr )$ pour $c_1>0$. Les démonstrations reposent sur l’analyse harmonique sur la sphère et l’inégalité d’hypercontractivité.
Révisé le :
Accepté le :
Publié le :
Dmitrii Zakharov 1
CC-BY 4.0
@article{CRMATH_2025__363_G12_1351_0,
author = {Dmitrii Zakharov},
title = {Spherical sets avoiding orthonormal bases},
journal = {Comptes Rendus. Math\'ematique},
pages = {1351--1362},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.782},
language = {en},
}
Dmitrii Zakharov. Spherical sets avoiding orthonormal bases. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1351-1362. doi: 10.5802/crmath.782
[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables (Milton Abramowitz; Irene A. Stegun, eds.), Dover Publications, 1992 | MR
[2] Algorithms with large domination ratio, J. Algorithms, Volume 50 (2004) no. 1, pp. 118-131 | DOI | MR | Zbl
[3] The density of planar sets avoiding unit distances (2022) | arXiv
[4] The density of sets avoiding distance 1 in Euclidean space, Discrete Comput. Geom., Volume 53 (2015) no. 4, pp. 783-808 | DOI | MR | Zbl
[5] Inequalities in Fourier analysis, Ann. Math. (2), Volume 102 (1975) no. 1, pp. 159-182 | DOI | MR | Zbl
[6] Optimization hierarchies for distance-avoiding sets in compact spaces (2023) | arXiv
[7] Étude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier, Volume 20 (1970) no. 2, pp. 335-402 | MR | Numdam
[8] Geometrical sets with forbidden configurations, Forum Math. Sigma, Volume 11 (2023), e44, 45 pages | DOI | MR | Zbl
[9] A recursive Lovász theta number for simplex-avoiding sets, Proc. Am. Math. Soc., Volume 150 (2022) no. 8, pp. 3307-3322 | DOI | MR | Zbl
[10] Approximation theory and harmonic analysis on spheres and balls, Springer Monographs in Mathematics, Springer, 2013 | DOI | MR | Zbl
[11] Complete positivity and distance-avoiding sets, Math. Program., Volume 191 (2022) no. 2, pp. 487-558 | DOI | MR | Zbl
[12] Intersection theorems with geometric consequences, Combinatorica, Volume 1 (1981) no. 4, pp. 357-368 | DOI | MR | Zbl
[13] The chromatic number of the plane is at least 5, Geombinatorics, Volume 28 (2018) no. 1, pp. 18-31 | MR | Zbl
[14] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061-1083 | Zbl | DOI | MR
[15] How large can a spherical set without two orthogonal vectors be? https://gilkalai.wordpress.com/... (Accessed 2025-10-20)
[16] Forbidden intersections for codes (2021) | arXiv
[17] Sharp hypercontractivity for global functions (2023) | arXiv | Zbl
[18] On -intersecting families of permutations (2023) | arXiv
[19] Quantum one-way communication is exponentially stronger than classical communication (2010) | arXiv
[20] Cutting corners (2022) arxiv:2211.17150 | Zbl
[21] Anticoncentration in Ramsey graphs and a proof of the Erdős–McKay conjecture, Forum Math. Pi, Volume 11 (2023), e21, 74 pages | DOI | MR | Zbl
[22] Analysis of Boolean functions, Cambridge University Press, 2014 | DOI | MR | Zbl
[23] Fourier analysis, linear programming, and densities of distance avoiding sets in , J. Eur. Math. Soc., Volume 12 (2010) no. 6, pp. 1417-1428 | DOI | MR | Zbl
[24] On the chromatic number of a space, Usp. Mat. Nauk, Volume 55 (2000) no. 2, pp. 147-148 | Zbl
[25] On the chromatic numbers of spheres in , Combinatorica, Volume 32 (2012) no. 1, pp. 111-123 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
