[Note sur une équation diophantienne symétrique]
Using an elementary argument, we show that for all rational numbers $\alpha $ such that neither $\alpha $ nor $3\alpha $ is a rational square, the equation
| \[ x^4-4\alpha x^2-4\alpha y^2+y^4=-6\alpha ^2 \] |
has no rational solutions. This answers Hindes’ two questions and generalizes his theorem (Theorem 1.1) in “Rational points on certain families of symmetric equations”, Int. J. Number Theory 11 (2015), no. 6, pp. 1821–1838.
En utilisant un argument élémentaire, nous montrons que pour tous les nombres rationnels $\alpha $ tels que ni $\alpha $ ni $3\alpha $ n’est un carré rationnel, l’équation
| \[ x^4-4\alpha x^2-4\alpha y^2+y^4=-6\alpha ^2 \] |
n’a pas de solutions rationnelles. Ceci répond aux deux questions de Hindes et généralise son théorème (Theorem 1.1) dans “Rational points on certain families of symmetric equations”, Int. J. Number Theory 11 (2015), no. 6, pp. 1821–1838.
Révisé le :
Accepté le :
Publié le :
Keywords: Arithmetic geometry, Diophantine equations, rational points
Mots-clés : Géométrie arithmétique, équations diophantiennes, points rationnels
Tho Nguyen Xuan 1
CC-BY 4.0
@article{CRMATH_2025__363_G10_985_0,
author = {Tho Nguyen Xuan},
title = {Note on a symmetric {Diophantine} equation},
journal = {Comptes Rendus. Math\'ematique},
pages = {985--988},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.785},
language = {en},
}
Tho Nguyen Xuan. Note on a symmetric Diophantine equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 985-988. doi: 10.5802/crmath.785
[1] Modular functions of one variable. IV. Proceedings of the International Summer School on Modular Functions of One Variable and Arithmetical Applications, RUCA, University of Antwerp, Antwerp, July 17–August 3, 1972 (B. J. Birch; W. Kuyk, eds.), Lecture Notes in Mathematics, 476, Springer, 1975, iv+151 pages | MR
[2] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | Zbl | DOI | MR
[3] A new characterization of the integer , Manuscr. Math., Volume 44 (1983) no. 1-3, pp. 187-229 | Zbl | DOI | MR
[4] On the Diophantine equation , Acta Arith., Volume 204 (2022) no. 2, pp. 141-150 | Zbl | DOI | MR
[5] Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, 239, Springer, 2007, xxiv+650 pages | Zbl | MR
[6] The indeterminate equations , , American Mathematical Society Translations, Ser. 2, Vol. 119 (Lev J. Leifman, ed.) (American Mathematical Society Translations, Series 2), American Mathematical Society, 1983 no. 119, pp. 27-34 | Zbl
[7] Covering collections and a challenge problem of Serre, Acta Arith., Volume 98 (2001) no. 2, pp. 197-205 | Zbl | DOI | MR
[8] Rational points on certain families of symmetric equations, Int. J. Number Theory, Volume 11 (2015) no. 6, pp. 1821-1838 | DOI | MR | Zbl
[9] Lectures on the Mordell-Weil theorem (Martin Brown; Michel Waldschmidt, eds.), Aspects of Mathematics, E15, Vieweg & Sohn, 1989, x+218 pages | Zbl | DOI | MR
[10] Rational points on certain families of curves of genus at least , Proc. Lond. Math. Soc. (3), Volume 55 (1987) no. 3, pp. 465-481 | Zbl | DOI | MR
Cité par Sources :
Commentaires - Politique
