Comptes Rendus
Article de recherche - Théorie des nombres
Note on a symmetric Diophantine equation
[Note sur une équation diophantienne symétrique]
Comptes Rendus. Mathématique, Volume 363 (2025), pp. 985-988

Using an elementary argument, we show that for all rational numbers $\alpha $ such that neither $\alpha $ nor $3\alpha $ is a rational square, the equation

\[ x^4-4\alpha x^2-4\alpha y^2+y^4=-6\alpha ^2 \]

has no rational solutions. This answers Hindes’ two questions and generalizes his theorem (Theorem 1.1) in “Rational points on certain families of symmetric equations”, Int. J. Number Theory 11 (2015), no. 6, pp. 1821–1838.

En utilisant un argument élémentaire, nous montrons que pour tous les nombres rationnels $\alpha $ tels que ni $\alpha $ ni $3\alpha $ n’est un carré rationnel, l’équation

\[ x^4-4\alpha x^2-4\alpha y^2+y^4=-6\alpha ^2 \]

n’a pas de solutions rationnelles. Ceci répond aux deux questions de Hindes et généralise son théorème (Theorem 1.1) dans “Rational points on certain families of symmetric equations”, Int. J. Number Theory 11 (2015), no. 6, pp. 1821–1838.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.785
Classification : 14G05, 14G12
Keywords: Arithmetic geometry, Diophantine equations, rational points
Mots-clés : Géométrie arithmétique, équations diophantiennes, points rationnels

Tho Nguyen Xuan 1

1 Faculty of Mathematics and Informatics, Hanoi University of Science and Technology, Hanoi, Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2025__363_G10_985_0,
     author = {Tho Nguyen Xuan},
     title = {Note on a symmetric {Diophantine} equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {985--988},
     year = {2025},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {363},
     doi = {10.5802/crmath.785},
     language = {en},
}
TY  - JOUR
AU  - Tho Nguyen Xuan
TI  - Note on a symmetric Diophantine equation
JO  - Comptes Rendus. Mathématique
PY  - 2025
SP  - 985
EP  - 988
VL  - 363
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.785
LA  - en
ID  - CRMATH_2025__363_G10_985_0
ER  - 
%0 Journal Article
%A Tho Nguyen Xuan
%T Note on a symmetric Diophantine equation
%J Comptes Rendus. Mathématique
%D 2025
%P 985-988
%V 363
%I Académie des sciences, Paris
%R 10.5802/crmath.785
%G en
%F CRMATH_2025__363_G10_985_0
Tho Nguyen Xuan. Note on a symmetric Diophantine equation. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 985-988. doi: 10.5802/crmath.785

[1] Modular functions of one variable. IV. Proceedings of the International Summer School on Modular Functions of One Variable and Arithmetical Applications, RUCA, University of Antwerp, Antwerp, July 17–August 3, 1972 (B. J. Birch; W. Kuyk, eds.), Lecture Notes in Mathematics, 476, Springer, 1975, iv+151 pages | MR

[2] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | Zbl | DOI | MR

[3] Andrew Bremner; Patrick Morton A new characterization of the integer 5906, Manuscr. Math., Volume 44 (1983) no. 1-3, pp. 187-229 | Zbl | DOI | MR

[4] Andrew Bremner; Nguyen Xuan Tho On the Diophantine equation x 4 +y 4 =c, Acta Arith., Volume 204 (2022) no. 2, pp. 141-150 | Zbl | DOI | MR

[5] Henri Cohen Number theory. Vol. I. Tools and Diophantine equations, Graduate Texts in Mathematics, 239, Springer, 2007, xxiv+650 pages | Zbl | MR

[6] V. A. Dem’janenko The indeterminate equations x 6 +y 6 =az 2 x 6 +y 6 =az 3 , x 4 +y 4 =az 4 , American Mathematical Society Translations, Ser. 2, Vol. 119 (Lev J. Leifman, ed.) (American Mathematical Society Translations, Series 2), American Mathematical Society, 1983 no. 119, pp. 27-34 | Zbl

[7] E. Victor Flynn; Joseph L. Wetherell Covering collections and a challenge problem of Serre, Acta Arith., Volume 98 (2001) no. 2, pp. 197-205 | Zbl | DOI | MR

[8] Wade Hindes Rational points on certain families of symmetric equations, Int. J. Number Theory, Volume 11 (2015) no. 6, pp. 1821-1838 | DOI | MR | Zbl

[9] Jean-Pierre Serre Lectures on the Mordell-Weil theorem (Martin Brown; Michel Waldschmidt, eds.), Aspects of Mathematics, E15, Vieweg & Sohn, 1989, x+218 pages | Zbl | DOI | MR

[10] Joseph H. Silverman Rational points on certain families of curves of genus at least 2, Proc. Lond. Math. Soc. (3), Volume 55 (1987) no. 3, pp. 465-481 | Zbl | DOI | MR

Cité par Sources :

Commentaires - Politique