[Faisceaux d’électrons : solutions partiellement plates d’une équation elliptique non linéaire avec un terme d’absorption singulier]
In the so-called Child–Langmuir law, established since 1911, an electron beam is formed linking two electrodes, which are assumed to be two parallel plates of area $A$, separated by a finite distance $D$. When $D\ll \sqrt{A}$, “edge effects” are negligible and the modelling is reduced to a nonlinear boundary problem for a singular ordinary differential equation in which a constant coefficient (the generated electric current $j$) must be found in order to get simultaneously Dirichlet and Neumann homogeneous boundary conditions in one of the extremes. If $D>\sqrt{A}$, then the problem becomes much more difficult since the “edge effects” arise in the plane $(x,y)$ and the electric current (now $j(x)$ due to the presence of a very large perpendicular magnetic field) must be determined in order to get solutions $u(x,y)$ of a singular semilinear equation which are partially flat ($u = \frac{\partial u}{\partial n} = 0$ on a part of the boundary). In this paper, we offer a rigorous mathematical treatment of some former studies (Joel Lebowitz and Alexander Rokhlenko (2003) and Alexander Rokhlenko (2006)), where several open questions were left open: for instance, the need for a singularity of $j(x)$ near the cathode edge to get such partially flat solutions.
Dans la loi dite de Child–Langmuir, établie depuis 1911, un faisceau d’électrons est formé reliant deux électrodes, supposées être deux plaques parallèles d’aire $A$, séparées d’une distance finie $D$. Lorsque $D\ll \sqrt{A}$ les « effets de bord » sont négligeables et la modélisation se réduit à un problème aux limites non linéaire pour une équation différentielle ordinaire singulière dans laquelle un coefficient constant (le courant électrique généré $j$) doit être trouvé afin d’obtenir simultanément des conditions aux limites homogènes de Dirichlet et de Neumann dans l’un des extrêmes. Si $D>\sqrt{A}$, alors le problème devient beaucoup plus difficile car les « effets de bord » apparaissent dans le plan $(x,y)$ et le courant électrique (maintenant $j(x)$ en raison de la présence d’un champ magnétique perpendiculaire très important) doit être déterminé afin d’obtenir des solutions $u(x,y)$ d’une équation semi-linéaire singulière qui soient partiellement plates ($u = \frac{\partial u}{\partial n} = 0$ sur une partie du bord). Dans cet article, nous proposons un traitement mathématique rigoureux de certaines études antérieures (Joel Lebowitz et Alexander Rokhlenko (2003) et Alexander Rokhlenko (2006)), où plusieurs questions ouvertes ont été laissées ouvertes : par exemple, la nécessité d’une singularité de $j(x)$ près du bord de la cathode pour obtenir de telles solutions partiellement plates.
Révisé le :
Accepté le :
Publié le :
Keywords: Electron beams, space charge, Child–Langmuir law, singular semilinear equation, partially flat solution, super and subsolution method, $H^1$-matching and its generalizations
Mots-clés : Faisceaux d’électrons, charge de l’espace, loi de Child–Langmuir, équation semi-linéaire singulière, solution partiellement plate, méthode de super et sous-solution, couplage $H^1$ et ses généralisations
Jesús Ildefonso Díaz 1
CC-BY 4.0
@article{CRMATH_2025__363_G12_1301_0,
author = {Jes\'us Ildefonso D{\'\i}az},
title = {Electron beams: partially flat solutions of a nonlinear elliptic equation with a singular absorption term},
journal = {Comptes Rendus. Math\'ematique},
pages = {1301--1338},
year = {2025},
publisher = {Acad\'emie des sciences, Paris},
volume = {363},
doi = {10.5802/crmath.792},
language = {en},
}
TY - JOUR AU - Jesús Ildefonso Díaz TI - Electron beams: partially flat solutions of a nonlinear elliptic equation with a singular absorption term JO - Comptes Rendus. Mathématique PY - 2025 SP - 1301 EP - 1338 VL - 363 PB - Académie des sciences, Paris DO - 10.5802/crmath.792 LA - en ID - CRMATH_2025__363_G12_1301_0 ER -
%0 Journal Article %A Jesús Ildefonso Díaz %T Electron beams: partially flat solutions of a nonlinear elliptic equation with a singular absorption term %J Comptes Rendus. Mathématique %D 2025 %P 1301-1338 %V 363 %I Académie des sciences, Paris %R 10.5802/crmath.792 %G en %F CRMATH_2025__363_G12_1301_0
Jesús Ildefonso Díaz. Electron beams: partially flat solutions of a nonlinear elliptic equation with a singular absorption term. Comptes Rendus. Mathématique, Volume 363 (2025), pp. 1301-1338. doi: 10.5802/crmath.792
[1] Mathematics and environment. Proceedings of the meeting between the Académie des Sciences and the Real Academia de Ciencias, Paris, 23-24 May, 2002 (Haim Brezis; J. I. Díaz, eds.), Real Academia de Ciencias Exactas, Físicas y Naturales, 2002 no. 96 | MR
[2] An introduction to fluid dynamics, Cambridge University Press, 1967 | Zbl | MR
[3] Estimates on the free boundary for quasi-variational inequalities, Commun. Partial Differ. Equations, Volume 2 (1977) no. 3, pp. 297-321 | DOI | Zbl | MR
[4] Some applications of the method of super and subsolutions, Bifurcation and nonlinear eigenvalue problems (Proc., Session, Univ. Paris XIII, Villetaneuse, 1978) (C. Bardos; J.-M. Lasry; M. Schatzman, eds.) (Lecture Notes in Mathematics), Springer, 1980 no. 782, pp. 16-41 | MR | DOI | Zbl
[5] Solutions of variational inequalities with compact support, Usp. Mat. Nauk, Volume 129 (1974), pp. 103-108 | MR | Zbl
[6] Functional analysis, Sobolev spaces and partial differential equations, Universitext, Springer, 2011 | MR | DOI | Zbl
[9] The space charge problem, SIAM J. Appl. Math., Volume 50 (1990) no. 1, pp. 181-198 | DOI | Zbl | MR
[10] Space-charge limited current for 1-d cylindrical diodes, Digest of Technical Papers. PPC-2003. 14th IEEE International Pulsed Power Conference (IEEE Cat. No. 03CH37472). Vol. 1, IEEE (2003), pp. 467-470 | DOI
[11] Discharge from hot CaO, Phys. Rev., I. Ser., Volume 32 (1911) no. 5, pp. 492-511
[12] Some remarks on a singular elliptic boundary value problem, Nonlinear Anal., Theory Methods Appl., Volume 32 (1998) no. 3, pp. 305-314 | DOI | MR | Zbl
[13] On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equations, Volume 2 (1977) no. 2, pp. 193-222 | DOI | Zbl | MR
[14] Quenching phenomenon of singular parabolic problems with initial data, Electron. J. Differ. Equ., Volume 2016 (2016) no. 2016, pp. 1-16 | MR | Zbl
[15] Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math., Volume 90 (2003) no. 1, pp. 303-335 | DOI | MR | Zbl
[16] Existence and asymptotic behavior for a singular parabolic equation, Trans. Am. Math. Soc., Volume 357 (2005) no. 5, pp. 1801-1828 | Zbl | MR | DOI
[17] An asymptotic analysis of the one-dimensional Vlasov–Poisson system: the Child–Langmuir law, Asymptotic Anal., Volume 4 (1991) no. 3, pp. 187-214 | DOI | Zbl | MR
[18] Nonlinear partial differential equations and free boundaries. Vol. I, Research Notes in Mathematics, Pitman Advanced Publishing Program, 1985 no. 106 | MR | Zbl
[19] On the Haïm Brezis pioneering contributions on the location of free boundaries, Elliptic and parabolic problems (Catherine Bandle; Henri Berestycki; Bernhard Brighi; Alain Brillard; Michel Chipot; Jean-Michel Coron; Carlo Sbordone; Itai Shafrir; Vanda Valente; Giorgio Vergara Caffarelli, eds.) (Progress in Nonlinear Differential Equations and their Applications), Birkhäuser (2005) no. 63, pp. 217-234 | DOI | Zbl
[20] On the ambiguous treatment of the Schrödinger equation for the infinite potential well and an alternative via flat solutions: the one-dimensional case, Interfaces Free Bound., Volume 17 (2015) no. 3, pp. 333-351 | DOI | MR | Zbl
[21] Monotone continuous dependence of solutions of singular quenching parabolic problems, Rend. Circ. Mat. Palermo (2), Volume 72 (2023) no. 4, pp. 2593-2602 | DOI | Zbl | MR
[22] On the existence of a free boundary for a class of reaction-diffusion systems, SIAM J. Math. Anal., Volume 15 (1984) no. 4, pp. 670-685 | DOI | Zbl | MR
[23] Global bifurcation and continua of nonnegative solutions for a quasilinear elliptic problem, C. R. Math., Volume 329 (1999) no. 7, pp. 587-592 | Zbl
[24] Positive and nodal solutions bifurcating from the infinity for a semilinear equation: solutions with compact support, Port. Math., Volume 72 (2015) no. 2, pp. 145-160 | DOI | MR | Zbl
[25] Beyond the classical strong maximum principle: sign-changing forcing term and flat solutions, Adv. Nonlinear Anal., Volume 13 (2024) no. 1, 20230128, 21 pages | MR | Zbl
[26] Flat solutions of some non-Lipschitz autonomous semilinear equations may be stable for , Chin. Ann. Math., Volume 38 (2017), pp. 345-378 | Zbl | DOI
[27] Branches of positive and free boundary solutions for some singular quasilinear elliptic problems, J. Math. Anal. Appl., Volume 352 (2009) no. 1, pp. 449-474 | MR | DOI | Zbl
[28] On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms, Milan J. Math., Volume 79 (2011), pp. 233-245 | MR | DOI | Zbl
[29] An elliptic equation with singular nonlinearity, Commun. Partial Differ. Equations, Volume 12 (1987) no. 12, pp. 1333-1344 | DOI | Zbl | MR
[30] On very weak solutions of semilinear elliptic equations with right-hand side data integrable with respect to the distance to the boundary, Discrete Contin. Dyn. Syst., Volume 27 (2010) no. 3, pp. 1037-1058 | Zbl | DOI | MR
[31] A singular non-linear equation, Osaka J. Math., Volume 12 (1960), pp. 1-19 | Zbl | MR
[32] Zur quantentheorie des atomkernes, Z. Phys., Volume 51 (1928) no. 3, pp. 204-212 | DOI | Zbl
[33] Singular elliptic and parabolic equations, Handbook of differential equations: stationary partial differential equations. Vol. III (Michel Chipot; Pavol Quittner, eds.), Elsevier, 2006, pp. 317-400 | Zbl
[34] Space charge physics for particle accelerators, Particle acceleration and detection, Springer, 2017 | DOI
[35] Charged particle beams, Courier Corporation, 2013
[36] Linear equations of the second order of parabolic type, Russ. Math. Surv., Volume 17 (1962) no. 3, pp. 1-143 | DOI
[37] Space-charge flow, McGraw-Hill physical and quantum electronics series, McGraw-Hill, 1967
[38] The effect of space charge and residual gases on thermionic currents in high vacuum, Phys. Rev., Volume 2 (1913) no. 6, pp. 450-486 | DOI
[39] Beyond the Child–Langmuir law: A review of recent results on multidimensional space-charge-limited flow, Phys. Plasmas, Volume 9 (2002) no. 5, pp. 2371-2376 | DOI | MR
[40] The sub-supersolution method for weak solutions, Proc. Am. Math. Soc., Volume 136 (2008) no. 7, pp. 2429-2438 | DOI | MR | Zbl
[41] Nonlinear parabolic and elliptic equations, Springer, 2012 | MR
[42] Existence of solutions of quenching problems, Appl. Anal., Volume 24 (1987) no. 4, pp. 253-264 | DOI | Zbl | MR
[43] Electromagnetism, Addison-Wesley Publishing Group, 2002
[44] Space charge limited flow in a rectangular region: profile of the current density, J. Appl. Phys., Volume 100 (2006) no. 1, 013305 | DOI
[45] Space-charge-limited 2D electron flow between two flat electrodes in a strong magnetic field, Phys. Rev. Lett., Volume 91 (2003) no. 8, 085002, 4 pages | DOI
[46] Space charge limited flow of a thin electron beam confined by a strong magnetic field, Phys. Plasmas, Volume 11 (2004) no. 10, pp. 4559-4563 | DOI
[47] Optimal regularity conditions for elliptic problems via -spaces, Duke Math. J., Volume 127 (2005) no. 1, pp. 175-192 | DOI | Zbl | MR
[48] Two-dimensional space-charge-limited emission: beam-edge characteristics and applications, Phys. Rev. Lett., Volume 87 (2001) no. 14, 145002, 4 pages | DOI
[49] Effets régularisants de semi-groupes non linéaires dans des espaces de Banach, Ann. Fac. Sci. Toulouse, Math., Volume 1 (1979) no. 2, pp. 171-200 | DOI | Numdam | Zbl | MR
[50] Current and current density of a finite-width, space-charge-limited electron beam in two-dimensional, parallel-plate geometry, Phys. Plasmas, Volume 8 (2001) no. 9, pp. 4202-4210 | DOI
[51] 100 years of the physics of diodes, Appl. Phys. Rev., Volume 4 (2017) no. 1, 011304, 29 pages | DOI
Cité par Sources :
Commentaires - Politique
