We investigate an analog of Bohr’s results for the Cesáro operator acting on the space of holomorphic functions defined on the unit disk. The asymptotical behaviour of the corresponding Bohr sum is also estimated.
Révisé le :
Accepté le :
Publié le :
Ilgiz R. Kayumov 1 ; Diana M. Khammatova 1 ; Saminathan Ponnusamy 2
@article{CRMATH_2020__358_5_615_0, author = {Ilgiz R. Kayumov and Diana M. Khammatova and Saminathan Ponnusamy}, title = {On the {Bohr} inequality for the {Ces\'aro} operator}, journal = {Comptes Rendus. Math\'ematique}, pages = {615--620}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.80}, language = {en}, }
TY - JOUR AU - Ilgiz R. Kayumov AU - Diana M. Khammatova AU - Saminathan Ponnusamy TI - On the Bohr inequality for the Cesáro operator JO - Comptes Rendus. Mathématique PY - 2020 SP - 615 EP - 620 VL - 358 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.80 LA - en ID - CRMATH_2020__358_5_615_0 ER -
Ilgiz R. Kayumov; Diana M. Khammatova; Saminathan Ponnusamy. On the Bohr inequality for the Cesáro operator. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 615-620. doi : 10.5802/crmath.80. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.80/
[1] On the Bohr inequality, Progress in Approximation Theory and Applicable Complex Analysis (Springer Optimization and Its Applications), Volume 117, Springer, 2016, pp. 265-295 | Zbl
[2] A note on Bohr’s phenomenon for power series, J. Math. Anal. Appl., Volume 449 (2017) no. 1, pp. 154-167 | MR | Zbl
[3] A theorem concerning power series, Proc. Lond. Math. Soc., Volume 13 (1914), pp. 1-5 | DOI | MR | Zbl
[4] Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital., Volume 17 (1962), pp. 276-282 | MR | Zbl
[5] A remark on Bohr’s inequality, Int. Math. Res. Not., Volume 2004 (2004) no. 80, pp. 4307-4330 | DOI | MR | Zbl
[6] Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., Volume 27 (1995) no. 4, pp. 359-362 | DOI | MR | Zbl
[7] A remark on Bohr’s theorem and its generalizations, J. Anal., Volume 8 (2000), pp. 65-77 | MR | Zbl
[8] Finite Blaschke products and their connections, Springer, 2018 | Zbl
[9] Some properties of fractional integrals II, Math. Z., Volume 34 (1931), pp. 403-439 | DOI | MR | Zbl
[10] Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory, Volume 17 (2017) no. 4, pp. 679-688 | DOI | MR | Zbl
[11] Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl., Volume 465 (2018) no. 2, pp. 857-871 | DOI | MR | Zbl
[12] Improved version of Bohr’s inequality, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 272-277 | DOI | MR | Zbl
[13] On a powered Bohr inequality, Ann. Acad. Sci. Fenn., Math., Volume 44 (2019) no. 1, pp. 301-310 | DOI | MR | Zbl
[14] Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., Volume 4 (1951), pp. 258-281 | MR | Zbl
[15] Cesáro averaging operators, Proc. R. Soc. Edinb., Sect. A, Math., Volume 124 (1994) no. 1, pp. 121-126 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique