Comptes Rendus
Analyse complexe, Analyse fonctionnelle
On the Bohr inequality for the Cesáro operator
Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 615-620.

We investigate an analog of Bohr’s results for the Cesáro operator acting on the space of holomorphic functions defined on the unit disk. The asymptotical behaviour of the corresponding Bohr sum is also estimated.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.80
Classification : 30H05, 30A10, 30C80

Ilgiz R. Kayumov 1 ; Diana M. Khammatova 1 ; Saminathan Ponnusamy 2

1 Kazan Federal University, 420 008 Kazan, Russia
2 Department of Mathematics, Indian Institute of Technology Madras, Chennai-600 036, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_5_615_0,
     author = {Ilgiz R. Kayumov and Diana M. Khammatova and Saminathan Ponnusamy},
     title = {On the {Bohr} inequality for the {Ces\'aro} operator},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {615--620},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {5},
     year = {2020},
     doi = {10.5802/crmath.80},
     language = {en},
}
TY  - JOUR
AU  - Ilgiz R. Kayumov
AU  - Diana M. Khammatova
AU  - Saminathan Ponnusamy
TI  - On the Bohr inequality for the Cesáro operator
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 615
EP  - 620
VL  - 358
IS  - 5
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.80
LA  - en
ID  - CRMATH_2020__358_5_615_0
ER  - 
%0 Journal Article
%A Ilgiz R. Kayumov
%A Diana M. Khammatova
%A Saminathan Ponnusamy
%T On the Bohr inequality for the Cesáro operator
%J Comptes Rendus. Mathématique
%D 2020
%P 615-620
%V 358
%N 5
%I Académie des sciences, Paris
%R 10.5802/crmath.80
%G en
%F CRMATH_2020__358_5_615_0
Ilgiz R. Kayumov; Diana M. Khammatova; Saminathan Ponnusamy. On the Bohr inequality for the Cesáro operator. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 615-620. doi : 10.5802/crmath.80. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.80/

[1] Yusuf Abu-Muhanna; Rosihan M. Ali; Saminathan Ponnusamy On the Bohr inequality, Progress in Approximation Theory and Applicable Complex Analysis (Springer Optimization and Its Applications), Volume 117, Springer, 2016, pp. 265-295 | Zbl

[2] Rosihan M. Ali; Roger W. Barnard; Alexander Yu. Solynin A note on Bohr’s phenomenon for power series, J. Math. Anal. Appl., Volume 449 (2017) no. 1, pp. 154-167 | MR | Zbl

[3] Harald Bohr A theorem concerning power series, Proc. Lond. Math. Soc., Volume 13 (1914), pp. 1-5 | DOI | MR | Zbl

[4] Enrico Bombieri Sopra un teorema di H. Bohr e G. Ricci sulle funzioni maggioranti delle serie di potenze, Boll. Unione Mat. Ital., Volume 17 (1962), pp. 276-282 | MR | Zbl

[5] Enrico Bombieri; Jean Bourgain A remark on Bohr’s inequality, Int. Math. Res. Not., Volume 2004 (2004) no. 80, pp. 4307-4330 | DOI | MR | Zbl

[6] P. G. Dixon Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., Volume 27 (1995) no. 4, pp. 359-362 | DOI | MR | Zbl

[7] Plamen B. Djakov; M. S. Ramanujan A remark on Bohr’s theorem and its generalizations, J. Anal., Volume 8 (2000), pp. 65-77 | MR | Zbl

[8] Stephan Ramon Garcia; Javad Mashreghi; William T. Ross Finite Blaschke products and their connections, Springer, 2018 | Zbl

[9] Godfrey H. Hardy; John E. Littlewood Some properties of fractional integrals II, Math. Z., Volume 34 (1931), pp. 403-439 | DOI | MR | Zbl

[10] Ilgiz R. Kayumov; Saminathan Ponnusamy Bohr inequality for odd analytic functions, Comput. Methods Funct. Theory, Volume 17 (2017) no. 4, pp. 679-688 | DOI | MR | Zbl

[11] Ilgiz R. Kayumov; Saminathan Ponnusamy Bohr’s inequalities for the analytic functions with lacunary series and harmonic functions, J. Math. Anal. Appl., Volume 465 (2018) no. 2, pp. 857-871 | DOI | MR | Zbl

[12] Ilgiz R. Kayumov; Saminathan Ponnusamy Improved version of Bohr’s inequality, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 272-277 | DOI | MR | Zbl

[13] Ilgiz R. Kayumov; Saminathan Ponnusamy On a powered Bohr inequality, Ann. Acad. Sci. Fenn., Math., Volume 44 (2019) no. 1, pp. 301-310 | DOI | MR | Zbl

[14] Johann von Neumann Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes, Math. Nachr., Volume 4 (1951), pp. 258-281 | MR | Zbl

[15] Krzysztof Stempak Cesáro averaging operators, Proc. R. Soc. Edinb., Sect. A, Math., Volume 124 (1994) no. 1, pp. 121-126 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique