We establish sharp Bohr phenomena for holomorphic functions defined on a bounded balanced domain in a complex Banach space , which map into a simply connected domain or a convex domain in the complex plane . Taking as the -dimensional complex plane and as the open unit polydisk, we consider a version of the Bohr inequality stronger than the above mentioned one and study the exact asymptotic behaviour of the Bohr radius. Explicit lower bounds on the Bohr radii of this type are also provided. Extending a recent result of Liu and Ponnusamy, we further record a refined form of the Bohr inequality for the particular case , i.e. the open unit disk in .
Accepté le :
Accepté après révision le :
Publié le :
DOI : 10.5802/crmath.237
Bappaditya Bhowmik 1 ; Nilanjan Das 1
@article{CRMATH_2021__359_7_911_0, author = {Bappaditya Bhowmik and Nilanjan Das}, title = {Bohr radius and its asymptotic value for holomorphic functions in higher dimensions}, journal = {Comptes Rendus. Math\'ematique}, pages = {911--918}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {7}, year = {2021}, doi = {10.5802/crmath.237}, zbl = {07398743}, language = {en}, }
TY - JOUR AU - Bappaditya Bhowmik AU - Nilanjan Das TI - Bohr radius and its asymptotic value for holomorphic functions in higher dimensions JO - Comptes Rendus. Mathématique PY - 2021 SP - 911 EP - 918 VL - 359 IS - 7 PB - Académie des sciences, Paris DO - 10.5802/crmath.237 LA - en ID - CRMATH_2021__359_7_911_0 ER -
Bappaditya Bhowmik; Nilanjan Das. Bohr radius and its asymptotic value for holomorphic functions in higher dimensions. Comptes Rendus. Mathématique, Volume 359 (2021) no. 7, pp. 911-918. doi : 10.5802/crmath.237. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.237/
[1] Multidimensional analogues of Bohr’s theorem on power series, Proc. Am. Math. Soc., Volume 128 (2000) no. 4, pp. 1147-1155 | DOI | MR | Zbl
[2] Generalization of results about the Bohr radius for power series, Stud. Math., Volume 180 (2007) no. 2, pp. 161-168 | DOI | MR | Zbl
[3] The Bohr radius of the -dimensional polydisk is equivalent to , Adv. Math., Volume 264 (2014), pp. 726-746 | DOI | Zbl
[4] A new approach towards estimating the -dimensional Bohr radius, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM, Volume 115 (2021) no. 2, 44, 10 pages | MR | Zbl
[5] Bohr phenomenon for operator-valued functions, Proc. Edinb. Math. Soc., Volume 64 (2021) no. 1, pp. 72-86 | DOI | MR | Zbl
[6] A characterization of Banach spaces with nonzero Bohr radius, Arch. Math., Volume 116 (2021) no. 5, pp. 551-558 | DOI | MR | Zbl
[7] Bohr’s power series theorem in several variables, Proc. Am. Math. Soc., Volume 125 (1997) no. 10, pp. 2975-2979 | DOI | MR | Zbl
[8] A theorem concerning power series, Proc. Lond. Math. Soc., Volume 13 (1914), pp. 1-5 | DOI | MR | Zbl
[9] A proof of the Bieberbach conjecture, Acta Math., Volume 154 (1985) no. 1-2, pp. 137-152 | DOI | MR | Zbl
[10] A logarithmic lower bound for multi-dimensional Bohr radii, Isr. J. Math., Volume 152 (2006), pp. 17-28 | DOI | MR | Zbl
[11] The Bohnenblust–Hille inequality for homogeneous polynomials is hypercontractive, Ann. Math., Volume 174 (2011) no. 1, pp. 485-497 | DOI | MR | Zbl
[12] Banach algebras satisfying the non-unital von Neumann inequality, Bull. Lond. Math. Soc., Volume 27 (1995) no. 4, pp. 359-362 | DOI | MR | Zbl
[13] Univalent functions, Grundlehren der Mathematischen Wissenschaften, 259, Springer, 1983 | Zbl
[14] Geometric function theory in one and higher dimensions, Pure and Applied Mathematics, Marcel Dekker, 255, Marcel Dekker, 2003 | MR | Zbl
[15] Bohr’s theorem for holomorphic mappings with values in homogeneous balls, Isr. J. Math., Volume 173 (2009), pp. 177-187 | DOI | MR | Zbl
[16] Bohr phenomenon on the unit ball of a complex Banach space, Math. Inequal. Appl., Volume 23 (2020) no. 4, pp. 1325-1341 | MR | Zbl
[17] Multidimensional analogues of refined Bohr’s inequality, Proc. Am. Math. Soc., Volume 149 (2021) no. 5, pp. 2133-2146 | MR | Zbl
[18] Bohr’s phenomenon in subordination and bounded harmonic classes, Complex Var. Elliptic Equ., Volume 55 (2010) no. 11, pp. 1071-1078 | DOI | MR | Zbl
[19] On Bohr’s inequality, Proc. Lond. Math. Soc., Volume 85 (2002) no. 2, pp. 493-512 | DOI | MR | Zbl
[20] New inequalities for the coefficients of unimodular bounded functions, Results Math., Volume 75 (2020) no. 3, 107, 11 pages | MR | Zbl
[21] Bohr inequalities for free holomorphic functions on polyballs, Adv. Math., Volume 347 (2019), pp. 1002-1053 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique