[Quotients de type Coxeter des groupes de tresses sur les surfaces]
Let $M$ be a closed surface, $q\ge 2$ and $n\ge 2$. In this paper, we analyze the Coxeter-type quotient group $B_n(M)(q)$ of the surface braid group $B_{n}(M)$ by the normal closure of the element $\sigma _1^q$, where $\sigma _1$ is the standard Artin generator of the braid group $B_n$. Also, we study the Coxeter-type quotient groups obtained by taking the quotient of $B_n(M)$ by the commutator subgroup of the respective pure braid group $\bigl [{P_n(M),P_n(M)}\bigr ]$ and adding the relation $\sigma _1^q=1$, when $M$ is a closed orientable surface or the disk.
Soit $M$ une surface fermée, $q\ge 2$ et $n\ge 2$. Dans cet article, nous étudions le groupe quotient de type Coxeter $B_n(M)(q)$ du groupe de tresses sur la surface $B_n(M)$, défini comme le quotient par la clôture normale de l’élément $\sigma _1^q$, où $\sigma _1$ désigne le générateur d’Artin standard du groupe de tresses $B_n$. Nous étudions également les groupes quotients de type Coxeter obtenus en quotientant $B_n(M)$ par le sous-groupe dérivé du groupe de tresses pures correspondant $\bigl [{P_n(M),P_n(M)}\bigr ]$ et en ajoutant la relation $\sigma _1^q=1$, lorsque $M$ est une surface orientable fermée ou le disque.
Révisé le :
Accepté le :
Publié le :
Keywords: Artin braid group, surface braid group, finite group
Mots-clés : Groupe de tresses d’Artin, groupe de tresses sur une surface, groupe fini
Renato Diniz  1 ; Oscar Ocampo  2 ; Paulo Cesar Cerqueira dos Santos Júnior  3
CC-BY 4.0
@article{CRMATH_2026__364_G1_27_0,
author = {Renato Diniz and Oscar Ocampo and Paulo Cesar Cerqueira dos Santos J\'unior},
title = {Coxeter-type quotients of surface braid groups},
journal = {Comptes Rendus. Math\'ematique},
pages = {27--37},
year = {2026},
publisher = {Acad\'emie des sciences, Paris},
volume = {364},
doi = {10.5802/crmath.813},
language = {en},
}
TY - JOUR AU - Renato Diniz AU - Oscar Ocampo AU - Paulo Cesar Cerqueira dos Santos Júnior TI - Coxeter-type quotients of surface braid groups JO - Comptes Rendus. Mathématique PY - 2026 SP - 27 EP - 37 VL - 364 PB - Académie des sciences, Paris DO - 10.5802/crmath.813 LA - en ID - CRMATH_2026__364_G1_27_0 ER -
Renato Diniz; Oscar Ocampo; Paulo Cesar Cerqueira dos Santos Júnior. Coxeter-type quotients of surface braid groups. Comptes Rendus. Mathématique, Volume 364 (2026), pp. 27-37. doi: 10.5802/crmath.813
[1] Noneuclidean tesselations and their groups (Wilhelm Magnus, ed.), Pure and Applied Mathematics, Academic Press Inc., 1974 | Zbl | DOI | MR
[2] Theorie der Zöpfe, Abh. Math. Semin. Univ. Hamb., Volume 4 (1925), pp. 47-72 | DOI | Zbl | MR
[3] Theory of braids, Ann. Math. (2), Volume 48 (1947), pp. 101-126 | DOI | MR | Zbl
[4] A proof of a theorem of Coxeter, C. R. Math. Rep. Acad. Sci. Canada, Volume 1 (1978/79) no. 1, pp. 41-44 | MR | Zbl
[5] Generators for the level congruence subgroups of braid groups, J. Algebra, Volume 691 (2026), pp. 1-16 | DOI | MR | Zbl
[6] Powers of half-twists and congruence subgroups of braid groups (2025) | arXiv
[7] Braid groups of compact -manifolds with elements of finite order, Trans. Am. Math. Soc., Volume 122 (1966), pp. 81-97 | DOI | MR | Zbl
[8] Factor groups of the braid group, Proceedings of the Fourth Canadian Mathematical Congress (Banff, 1957) (M. S. MacPhail, ed.), University of Toronto Press, 1959, pp. 95-122 | Zbl
[9] The braid groups of and , Duke Math. J., Volume 29 (1962), pp. 243-257 | MR | Zbl
[10] The braid groups, Math. Scand., Volume 10 (1962), pp. 119-126 | DOI | MR | Zbl
[11] and cubulated Shephard groups, J. Lond. Math. Soc. (2), Volume 111 (2025) no. 1, e70050, 33 pages | DOI | MR | Zbl
[12] A quotient of the Artin braid groups related to crystallographic groups, J. Algebra, Volume 474 (2017), pp. 393-423 | DOI | MR | Zbl
[13] Crystallographic groups and flat manifolds from surface braid groups, Topology Appl., Volume 293 (2021), 107560, 16 pages | DOI | MR | Zbl
[14] New presentations of surface braid groups, J. Knot Theory Ramifications, Volume 10 (2001) no. 3, pp. 431-451 | DOI | MR | Zbl
[15] Vassiliev invariants for braids on surfaces, Trans. Am. Math. Soc., Volume 356 (2004) no. 1, pp. 219-243 | DOI | MR | Zbl
[16] A survey of surface braid groups and the lower algebraic -theory of their group rings, Handbook of group actions. Vol. II (Lizhen Ji; Athanase Papadopoulos; Shing-Tung Yau, eds.) (Advanced Lectures in Mathematics), Volume 32, International Press, 2015, pp. 23-75 | MR
[17] Braids and coverings: selected topics, London Mathematical Society Student Texts, 18, Cambridge University Press, 1989 | DOI | MR | Zbl
[18] Elementary number theory, Springer Undergraduate Mathematics Series, Springer, 1998 | DOI | MR | Zbl
[19] A study of braids, Mathematics and its Applications, 484, Kluwer Academic Publishers, 1999 | DOI | MR | Zbl
[20] Um quociente do grupo de tranças de Artin relacionado aos grupos cristalográficos, Ph. D. Thesis, Universidade Federal da Bahia, Salvador (Brazil) (2019)
[21] Braid groups and the group of homeomorphisms of a surface, Proc. Camb. Philos. Soc., Volume 68 (1970), pp. 605-617 | DOI | MR | Zbl
[22] GAP – Groups, Algorithms, and Programming, version 4.12.2, 2022 https://www.gap-system.org
[23] A braidlike presentation of , Isr. J. Math., Volume 76 (1991) no. 3, pp. 265-288 | DOI | MR | Zbl
[24] The topological discriminant group of a Riemann surface of genus , Am. J. Math., Volume 59 (1937) no. 2, pp. 335-358 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique
