[Une inégalité de Korn non linéaire dans avec une constante majorée explicitement]
Il est connu que la distance dans entre une application dans préservant l’orientation et une autre application préservant l’orientation, où est un domain de , , et est un nombre réel, est majorée par la distance dans entre les racines carrées des champs de tenseurs métriques induits par ces applications, multipliée par une constante dépendant uniquement de , , et .
L’objet de cette Note est d’établir une meilleure inégalité de ce type, et de fournir en plus une borne supérieure explicitement calculable de la constante qui y apparaît. Un rôle essentiel est joué dans nos preuves par la notion de distance géodésique dans un ouvert de .
It is known that the -distance between an orientation-preserving mapping in and another orientation-preserving mapping , where is a domain in , , and is a real number, is bounded above by the -distance between the square roots of the metric tensor fields induced by these mappings, multiplied by a constant depending only on , , and .
The object of this Note is to establish a better inequality of this type, and to provide in addition an explicitly computable upper bound on the constant appearing in it. An essential role is played in our proofs by the notion of geodesic distance inside an open subset of .
Accepté le :
Publié le :
Maria Malin 1 ; Cristinel Mardare 2
@article{CRMATH_2020__358_5_621_0, author = {Maria Malin and Cristinel Mardare}, title = {A nonlinear {Korn} inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant}, journal = {Comptes Rendus. Math\'ematique}, pages = {621--626}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {5}, year = {2020}, doi = {10.5802/crmath.84}, language = {en}, }
TY - JOUR AU - Maria Malin AU - Cristinel Mardare TI - A nonlinear Korn inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant JO - Comptes Rendus. Mathématique PY - 2020 SP - 621 EP - 626 VL - 358 IS - 5 PB - Académie des sciences, Paris DO - 10.5802/crmath.84 LA - en ID - CRMATH_2020__358_5_621_0 ER -
Maria Malin; Cristinel Mardare. A nonlinear Korn inequality in $\protect \mathbb{R}^n$ with an explicitly bounded constant. Comptes Rendus. Mathématique, Volume 358 (2020) no. 5, pp. 621-626. doi : 10.5802/crmath.84. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.84/
[1] Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press Inc., 1975 | MR | Zbl
[2] The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, Math. Methods Appl. Sci., Volume 27 (2004) no. 11, pp. 1283-1299 | DOI | Zbl
[3] Linear and Nonlinear Functional Analysis with Applications, Other Titles in Applied Mathematics, 130, Society for Industrial and Applied Mathematics, 2013 | Zbl
[4] Continuity of a deformation in as a function of its Cauchy-Green tensor in , J. Nonlinear Sci., Volume 14 (2004) no. 5, pp. 415-427 | DOI | MR | Zbl
[5] Nonlinear Korn inequalities, J. Math. Pures Appl., Volume 104 (2015) no. 6, pp. 1119-1134 | DOI | MR | Zbl
[6] Low-energy deformations of thin elastic plates: Isometric embeddings and branching patterns, 2004 (Habilitationsschrift, Universität Leipzig) | Zbl
[7] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Commun. Pure Appl. Math., Volume 55 (2002) no. 11, pp. 1461-1506 | DOI | MR | Zbl
[8] Estimates for the constant in two nonlinear Korn inequalities (in preparation)
[9] Sobolev Spaces, Springer, 1985
Cité par Sources :
Commentaires - Politique