[Quelques propriétés asymptotiques des solutions des équations d'avection–diffusion unidimensionnelles aux données initiales dans ]
We state and discuss a number of fundamental asymptotic properties of solutions to one-dimensional advection–diffusion equations of the form , , , assuming initial values for some .
Nous établissons plusieurs propriétés asymptotiques fondamentales des solutions des équations d'avection–diffusion du type , , , aux données initiales dans l'espace de Lebesgue , où .
Accepté le :
Publié le :
Pablo Braz e Silva 1 ; Paulo R. Zingano 2
@article{CRMATH_2006__342_7_465_0,
author = {Pablo Braz e Silva and Paulo R. Zingano},
title = {Some asymptotic properties for solutions of one-dimensional advection{\textendash}diffusion equations with {Cauchy} data in $ {L}^{p}(\mathbb{R})$},
journal = {Comptes Rendus. Math\'ematique},
pages = {465--467},
year = {2006},
publisher = {Elsevier},
volume = {342},
number = {7},
doi = {10.1016/j.crma.2006.02.006},
language = {en},
}
TY - JOUR
AU - Pablo Braz e Silva
AU - Paulo R. Zingano
TI - Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in $ {L}^{p}(\mathbb{R})$
JO - Comptes Rendus. Mathématique
PY - 2006
SP - 465
EP - 467
VL - 342
IS - 7
PB - Elsevier
DO - 10.1016/j.crma.2006.02.006
LA - en
ID - CRMATH_2006__342_7_465_0
ER -
%0 Journal Article
%A Pablo Braz e Silva
%A Paulo R. Zingano
%T Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in $ {L}^{p}(\mathbb{R})$
%J Comptes Rendus. Mathématique
%D 2006
%P 465-467
%V 342
%N 7
%I Elsevier
%R 10.1016/j.crma.2006.02.006
%G en
%F CRMATH_2006__342_7_465_0
Pablo Braz e Silva; Paulo R. Zingano. Some asymptotic properties for solutions of one-dimensional advection–diffusion equations with Cauchy data in $ {L}^{p}(\mathbb{R})$. Comptes Rendus. Mathématique, Volume 342 (2006) no. 7, pp. 465-467. doi: 10.1016/j.crma.2006.02.006
[1] Bounds for the fundamental solution of a parabolic equation, Bull. Amer. Math. Soc., Volume 73 (1967), pp. 890-896
[2] Second order linear equations of parabolic type, Russian Math. Surveys, Volume 17 (1962), pp. 1-143
[3] Quasilinear parabolic equations and first-order quasilinear conservation laws with bad Cauchy data, J. Math. Anal. Appl., Volume 35 (1971), pp. 563-576
[4] Linear and Quasilinear Equations of Parabolic Type, American Mathematical Society, Providence, RI, 1968
[5] Nonlinear stability under large disturbances, J. Comput. Appl. Math., Volume 103 (1999), pp. 207-219
[6] Some asymptotic limits for solutions of Burgers equation (arXiv:) | arXiv
Cité par Sources :
Commentaires - Politique
