[Décompositions en sommes de deux polynômes irréductibles dans
A monic polynomial in
Un polynôme unitaire
Accepté le :
Publié le :
Andreas O. Bender 1
@article{CRMATH_2008__346_17-18_931_0, author = {Andreas O. Bender}, title = {Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$}, journal = {Comptes Rendus. Math\'ematique}, pages = {931--934}, publisher = {Elsevier}, volume = {346}, number = {17-18}, year = {2008}, doi = {10.1016/j.crma.2008.07.025}, language = {en}, }
Andreas O. Bender. Decompositions into sums of two irreducibles in $ {\mathbf{F}}_{q}[t]$. Comptes Rendus. Mathématique, Volume 346 (2008) no. 17-18, pp. 931-934. doi : 10.1016/j.crma.2008.07.025. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2008.07.025/
[1] A.O. Bender, Representing an element in
[2] A potential analogue of Schinzel's hypothesis for polynomials with coefficients in
[3] Additive Number Theory of Polynomials Over a Finite Field, Oxford University Press, New York, NY, 1991
[4] Commutative Algebra With a View Toward Algebraic Geometry, Graduate Texts in Mathematics, vol. 150, Springer-Verlag, New York, NY, 1995
[5] Über Riemann'sche Flächen mit gegebenen Verzweigungspunkten, Math. Ann., Volume 39 (1891), pp. 1-61 (and Math. Werke, Band 1/XXI, Birkhäuser, Basel, 1932)
- Computers as a novel mathematical reality. IV: The Goldbach problem, Doklady Mathematics, Volume 107 (2023) no. 3, pp. 205-241 | DOI:10.1134/s1064562423700795 | Zbl:1544.11003
- Prime polynomial values of linear functions in short intervals, Journal of Number Theory, Volume 151 (2015), pp. 263-275 | DOI:10.1016/j.jnt.2014.12.016 | Zbl:1318.11150
- Representing an element in
as the sum of two irreducibles, Mathematika, Volume 60 (2014) no. 1, pp. 166-182 | DOI:10.1112/s0025579313000065 | Zbl:1311.11113 - The exceptional set in the polynomial Goldbach problem, International Journal of Number Theory, Volume 7 (2011) no. 3, pp. 579-591 | DOI:10.1142/s1793042111004423 | Zbl:1246.11184
Cité par 4 documents. Sources : zbMATH
Commentaires - Politique