[Géodesiques sur des variétiés de Stiefel et de Grassmann de dimension infinie]
Let V be a separable Hilbert space, possibly infinite dimensional. Let
Soit V un espace de Hilbert séparable, éventuellement de dimension infinie. Soient
Accepté le :
Publié le :
Philipp Harms 1 ; Andrea C.G. Mennucci 2
@article{CRMATH_2012__350_15-16_773_0, author = {Philipp Harms and Andrea C.G. Mennucci}, title = {Geodesics in infinite dimensional {Stiefel} and {Grassmann} manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {773--776}, publisher = {Elsevier}, volume = {350}, number = {15-16}, year = {2012}, doi = {10.1016/j.crma.2012.08.010}, language = {en}, }
TY - JOUR AU - Philipp Harms AU - Andrea C.G. Mennucci TI - Geodesics in infinite dimensional Stiefel and Grassmann manifolds JO - Comptes Rendus. Mathématique PY - 2012 SP - 773 EP - 776 VL - 350 IS - 15-16 PB - Elsevier DO - 10.1016/j.crma.2012.08.010 LA - en ID - CRMATH_2012__350_15-16_773_0 ER -
Philipp Harms; Andrea C.G. Mennucci. Geodesics in infinite dimensional Stiefel and Grassmann manifolds. Comptes Rendus. Mathématique, Volume 350 (2012) no. 15-16, pp. 773-776. doi : 10.1016/j.crma.2012.08.010. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2012.08.010/
[1] The Hopf–Rinow theorem is false in infinite dimensions, Bull. London Math. Soc., Volume 7 (1975) no. 3, pp. 261-266 | DOI
[2] The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., Volume 20 (1998), pp. 303-353 | arXiv | DOI
[3] Hilbert manifolds without epiconjugate points, Proc. Amer. Math. Soc., Volume 16 (1965), pp. 1365-1371 (ISSN: 0002-9939) | DOI
[4] Fundamentals of Differential Geometry, Springer-Verlag, 1999 (ISBN: 0-387-98593-X)
[5] G. Sundaramoorthi, A. Mennucci, S. Soatto, A. Yezzi, Tracking deforming objects by filtering and prediction in the space of curves, in: Conference on Decision and Control, ISBN 978-1-4244-3871-6, 2009, pp. 2395–2401, . | DOI
[6] A new geometric metric in the space of curves, and applications to tracking deforming objects by prediction and filtering, SIAM J. Imaging Sci., Volume 4 (2011), pp. 109-145 | DOI
[7] Computable elastic distances between shapes, SIAM J. Appl. Math., Volume 58 (1998) no. 2, pp. 565-586 | DOI
[8] A metric on shape space with explicit geodesics, Atti. Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 19 (2008) no. 1, pp. 25-57 (ISSN: 1120-6330) | DOI
Cité par Sources :
☆ This research was funded by SNS09MENNB of the Scuola Normale Superiore, and by the FWF Project 21030.
Commentaires - Politique