logo CRAS
Comptes Rendus. Mathématique
Group Theory
A characterization of Nested Groups in terms of conjugacy classes
;
Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 109-112.

A group is nested if the centers of the irreducible characters form a chain. In this paper, we will show that there is a set of subgroups associated with the conjugacy classes of group so that a group is nested if and only if these subgroups form a chain.

Un groupe est emboîté si les centres des caractères irréductibles forment une chaîne. Dans cet article, nous montrerons qu’il existe un ensemble de sous-groupes associés aux classes de conjugaison de groupe tel qu’un groupe est emboîté si et seulement si ces sous-groupes forment une chaîne.

Received : 2019-10-08
Accepted : 2019-12-20
Published online : 2020-03-19
DOI : https://doi.org/10.5802/crmath.18
Classification:  20C15
Keywords: nested groups, nested GVZ groups, conjugacy classes
@article{CRMATH_2020__358_1_109_0,
     author = {Shawn T. Burkett and Mark L. Lewis},
     title = {A characterization of Nested Groups in terms of conjugacy classes},
     journal = {Comptes Rendus. Math\'ematique},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     pages = {109-112},
     doi = {10.5802/crmath.18},
     language = {en},
     url={comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_1_109_0/}
}
Shawn T. Burkett; Mark L. Lewis. A characterization of Nested Groups in terms of conjugacy classes. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 109-112. doi : 10.5802/crmath.18. https://comptes-rendus.academie-sciences.fr/mathematique/item/CRMATH_2020__358_1_109_0/

[1] Yakov Berkovich Groups of prime power order. Vol. 1, de Gruyter Expositions in Mathematics, Tome 46, Walter de Gruyter, 2008 | MR 2464640 | Zbl 1168.20001

[2] Shawn T. Burkett; Mark L. Lewis GVZ-groups (2019) (https://arxiv.org/abs/1909.05841, submitted)

[3] Shawn T. Burkett; Mark L. Lewis Groups where the centers of the irreducible characters form a chain II, Monatsh. Math. (2020) | Article

[4] David Chillag On Blichfeldt’s like congruences and other close characters—conjugacy classes analogs, Ischia group theory 2008, World Scientific, 2008, pp. 42-55 | Zbl 1196.20008

[5] Mark L. Lewis Groups where the centers of the irreducible characters form a chain, Monatsh. Math. (2020) | Article

[6] Adriana Nenciu Isomorphic character tables of nested GVZ-groups, J. Algebra Appl., Tome 11 (2012) no. 2, 1250033, 12 pages | MR 2925447 | Zbl 1255.20005

[7] Adriana Nenciu Nested GVZ-groups, J. Group Theory, Tome 19 (2016) no. 4, pp. 693-704 | MR 3518399 | Zbl 1353.20003