Comptes Rendus
Combinatorics
On the exponential generating function of labelled trees
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1005-1009.

We show that the generating function of labelled trees is not D -finite.

Nous montrons que la série génératrice des arbres étiquetés n’est pas D -finie.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.108
Classification: 05A15, 12H05, 34A34
Alin Bostan 1; Antonio Jiménez-Pastor 2

1 Inria, 1 rue Honoré d’Estienne d’Orves 91120 Palaiseau, France
2 Johannes Kepler University Linz, Doctoral Program Computational Mathematics, DK15
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_9-10_1005_0,
     author = {Alin Bostan and Antonio Jim\'enez-Pastor},
     title = {On the exponential generating function  of labelled trees},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1005--1009},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.108},
     language = {en},
}
TY  - JOUR
AU  - Alin Bostan
AU  - Antonio Jiménez-Pastor
TI  - On the exponential generating function  of labelled trees
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1005
EP  - 1009
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.108
LA  - en
ID  - CRMATH_2020__358_9-10_1005_0
ER  - 
%0 Journal Article
%A Alin Bostan
%A Antonio Jiménez-Pastor
%T On the exponential generating function  of labelled trees
%J Comptes Rendus. Mathématique
%D 2020
%P 1005-1009
%V 358
%N 9-10
%I Académie des sciences, Paris
%R 10.5802/crmath.108
%G en
%F CRMATH_2020__358_9-10_1005_0
Alin Bostan; Antonio Jiménez-Pastor. On the exponential generating function  of labelled trees. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1005-1009. doi : 10.5802/crmath.108. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.108/

[1] Martin Aigner; Günter M. Ziegler Proofs from The Book, Springer, 2010, viii+274 pages | DOI | Zbl

[2] George E. Andrews; Richard Askey; Ranjan Roy Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999, xvi+664 pages | DOI | MR | Zbl

[3] Norman L. Biggs; E. Keith Lloyd; Robin J. Wilson Graph theory. 1736–1936, Clarendon Press, 1986, xii+239 pages | Zbl

[4] Carl W. Borchardt Ueber eine der Interpolation entsprechende Darstellung der Eliminations-Resultante, J. Reine Angew. Math., Volume 57 (1860), pp. 111-121 | DOI | MR

[5] A. Bostan; L. Di Vizio; K. Raschel Differential transcendence of Bell numbers and relatives — a Galois theoretic approach, 2020 (In preparation)

[6] Aarthur Cayley A theorem on trees, Q. J. Math, Volume 23 (1889), pp. 376-378

[7] Robert M. Corless; Gaston H. Gonnet; David E. G. Hare; David J. Jeffrey; Donald E. Knuth On the Lambert W function, Adv. Comput. Math., Volume 5 (1996) no. 4, pp. 329-359 | DOI | MR | Zbl

[8] Philippe Flajolet; Stefan Gerhold; Bruno Salvy On the non-holonomic character of logarithms, powers, and the nth prime function, Electron. J. Comb., Volume 11 (2005) no. 2, A2, 16 pages | Zbl

[9] Philippe Flajolet; Robert Sedgewick Analytic combinatorics, Cambridge University Press, 2009, xiv+810 pages | DOI | Zbl

[10] Stefan Gerhold On some non-holonomic sequences, Electron. J. Comb., Volume 11 (2004) no. 1, 87, 8 pages | MR | Zbl

[11] Joris van der Hoeven Computing with D-algebraic power series, Appl. Algebra Eng. Commun. Comput., Volume 30 (2019) no. 1, pp. 17-49 | DOI | MR | Zbl

[12] Johan L. W. V. Jensen Sur une identité d’Abel et sur d’autres formules analogues, Acta Math., Volume 26 (1902) no. 1, pp. 307-318 | DOI | Zbl

[13] Antonio Jiménez-Pastor; Veronika Pillwein A computable extension for D-finite functions: DD-finite functions, J. Symb. Comput., Volume 94 (2019), pp. 90-104 | DOI | MR | Zbl

[14] Antonio Jiménez-Pastor; Veronika Pillwein; Michael F. Singer Some structural results on D n -finite functions, Adv. Appl. Math., Volume 117 (2020), 102027, 29 pages | DOI | MR | Zbl

[15] Martin Klazar Bell numbers, their relatives, and algebraic differential equations, J. Comb. Theory, Ser. A, Volume 102 (2003) no. 1, pp. 63-87 | DOI | MR | Zbl

[16] László Lovász Combinatorial problems and exercises, North-Holland, 1993, 635 pages | Zbl

[17] Abdul M. Mian; Sarvadaman Chowla The differential equations satisfied by certain functions, J. Indian Math. Soc., New Ser., Volume 8 (1944), pp. 27-28 | MR | Zbl

[18] Marc P. Noordman; Marius van der Put; Jaap Top Combinatorial Autonomous first order differential equations, 2019 (preprint, https://arxiv.org/abs/1904.08152v1)

[19] Igor Pak Complexity problems in enumerative combinatorics, Proceedings of the International Congress of Mathematicians — Rio de Janeiro 2018. Vol. IV. Invited lectures (2018), pp. 3153-3180 | Zbl

[20] Maxwell Rosenlicht The nonminimality of the differential closure, Pac. J. Math., Volume 52 (1974), pp. 529-537 | DOI | MR | Zbl

[21] Lee A. Rubel A survey of transcendentally transcendental functions, Am. Math. Mon., Volume 96 (1989) no. 9, pp. 777-788 | DOI | MR | Zbl

[22] Michael F. Singer Algebraic relations among solutions of linear differential equations, Trans. Am. Math. Soc., Volume 295 (1986) no. 2, pp. 753-763 | DOI | MR | Zbl

[23] Richard P. Stanley Differentiably finite power series, Eur. J. Comb., Volume 1 (1980) no. 2, pp. 175-188 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy