In this article, we consider the radial Dunkl geometric case
Dans cet article, nous considérons le cas géométrique radial de Dunkl
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.188
Piotr Graczyk 1 ; Patrice Sawyer 2

@article{CRMATH_2021__359_4_427_0, author = {Piotr Graczyk and Patrice Sawyer}, title = {Sharp {Estimates} of {Radial} {Dunkl} and {Heat} {Kernels} in the {Complex} {Case} $A_n$}, journal = {Comptes Rendus. Math\'ematique}, pages = {427--437}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {4}, year = {2021}, doi = {10.5802/crmath.188}, zbl = {07362164}, language = {en}, }
TY - JOUR AU - Piotr Graczyk AU - Patrice Sawyer TI - Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case $A_n$ JO - Comptes Rendus. Mathématique PY - 2021 SP - 427 EP - 437 VL - 359 IS - 4 PB - Académie des sciences, Paris DO - 10.5802/crmath.188 LA - en ID - CRMATH_2021__359_4_427_0 ER -
Piotr Graczyk; Patrice Sawyer. Sharp Estimates of Radial Dunkl and Heat Kernels in the Complex Case $A_n$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 427-437. doi : 10.5802/crmath.188. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.188/
[1] Harmonic Functions, Conjugate Harmonic Functions and the Hardy Space
[2] Heat kernel and Green function estimates on noncompact symmetric spaces, Geom. Funct. Anal., Volume 9 (1999) no. 6, pp. 1035-1091 | DOI | MR | Zbl
[3] Heat kernels and spectral theory, Cambridge Tracts in Mathematics, 92, Cambridge University Press, 1989 | MR | Zbl
[4] Paley–Wiener theorems for the Dunkl transform, Trans. Am. Math. Soc., Volume 358 (2006) no. 10, pp. 4225-4250 | DOI | MR | Zbl
[5] A chaotic representation property of the multidimensional Dunkl processes, Ann. Probab., Volume 34 (2006) no. 4, pp. 1530-1549 | MR | Zbl
[6] Potential kernels for radial Dunkl Laplacians (2019) to appear in theCanadian Journal of Mathematics (2021), https://arxiv.org/abs/1910.03105
[7] Harmonic and Stochastic Analysis of Dunkl Processes, Travaux en Cours, 71, Hermann, 2008 | Zbl
[8] Integral Kernels on Complex Symmetric Spaces and for the Dyson Brownian Motion (2020) to appear in the Mathematische Nachrichten (2021), https://arxiv.org/abs/2012.10946 | Zbl
[9] Groups and geometric analysis: integral geometry, invariant differential operators, and spherical functions, Mathematical Surveys and Monographs, 83, American Mathematical Society, 2000 (corrected reprint of the 1984 original edition) | Zbl
[10] Differential geometry and symmetric spaces, Graduate Studies in Mathematics, 34, American Mathematical Society, 2001 (reprint with corrections of the 1978 original edition) | MR | Zbl
[11] The Bounded Spherical Functions on the Cartan motion group (2015) (https://arxiv.org/abs/1503.07598) | Zbl
[12] Asymptotics of Harish–Chandra expansions, bounded hypergeometric functions associated with root systems, and applications, Adv. Math., Volume 252 (2014), pp. 227-259 | DOI | MR | Zbl
[13] Generalized Hermite polynomials and the heat equation for Dunkl operators, Commun. Math. Phys., Volume 192 (1998) no. 3, pp. 519-542 | MR | Zbl
[14] Positivity of Dunkl’s intertwining operator, Duke Math. J., Volume 98 (1999) no. 3, pp. 445-463 | MR | Zbl
[15] The Abel transform on symmetric spaces of noncompact type, Lie groups and symmetric spaces. In memory of F. I. Karpelevich (Translations of the American Mathematical Society-Series 2), Volume 210, American Mathematical Society, 2003, pp. 331-335 | MR | Zbl
[16] A Laplace-type representation of the generalized spherical functions associated with the root systems of type
[17] Contributions to the hypergeometric function theory of Heckman and Opdam: sharp estimates, Schwartz space, heat kernel, Geom. Funct. Anal., Volume 18 (2008) no. 1, pp. 222-250 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique